Kapundaite, (Na,Ca)₂Fe₄³⁺(PO₄)₄(OH)₃·5H₂O, a new phosphate species from Toms quarry, South Australia: Description and structural relationship to mélonjosephite

STUART J. MILLS,^{1,2,*} WILLIAM D. BIRCH,² ANTHONY R. KAMPF,³ ANDREW G. CHRISTY,⁴ JOSEPH J. PLUTH,⁵ ALLAN PRING,⁶ MATI RAUDSEPP,¹ AND YU-SHENG CHEN⁷

¹Department of Earth and Ocean Sciences, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada ²Geosciences, Museum Victoria, GPO Box 666, Melbourne, Victoria 3001, Australia

³Mineral Sciences Department, Natural History Museum of Los Angeles County, 900 Exposition Boulevard, Los Angeles, California 90007, U.S.A.

⁴Research School of Earth Sciences, The Australian National University, Canberra, ACT 0200, Australia
⁵Department of Geophysical Sciences, Center for Advanced Radiation Sources and Materials, University of Chicago, 5734 S. Ellis Avenue, Chicago, Illinois 60637-1434, U.S.A.

⁶Mineralogy Department, South Australian Museum, North Terrace, Adelaide, South Australia 5000, Australia ⁷Center for Advanced Radiation Sources, University of Chicago, 5640 S. Ellis Avenue, Chicago, Illinois 60637-1434, U.S.A.

ABSTRACT

Kapundaite, ideally $(Na,Ca)_2Fe_4^{3+}(PO_4)_4(OH)_3 \cdot 5H_2O$, is a new mineral (IMA2009-047) from Toms phosphate quarry, Kapunda, South Australia, Australia. The new mineral occurs as cavernous aggregates of fibers up to several centimeters across, associated with leucophosphite, natrodufrenite, and meurigite-Na crystals and amorphous brown, black, and/or greenish coatings. Individual kapundaite crystals are very thin flattened fibers up to a few millimeters in length, but typically no more than a few micrometers in thickness. The main form observed is {100}; other forms in the [010] zone are present, but cannot be measured. Crystals of kapundaite are pale to golden yellow, transparent to translucent, have a yellow streak and silky luster, and are non-fluorescent. Mohs hardness is estimated to be about 3; no twinning or cleavage was observed. Kapundaite is biaxial (+), with indices of refraction $\alpha = 1.717(3)$, $\beta = 1.737(3)$, and $\gamma = 1.790(3)$. 2V could not be measured; 2V_{calc} is 64.7°. The optical orientation is $Z = \mathbf{b}$, $Y \approx \mathbf{c}$ with weak pleochroism: X = nearly colorless, Y = light brown, Z = pale brown; absorption: Y > Z > X. No dispersion was observed. The empirical chemical formula (mean of seven electron microprobe analyses) calculated on the basis of 24 O is $(Ca_{1,13}Na_{0.95})_{\Sigma_{2,08}}(Fe_{3,33}^{+})$ $Mn_{0.03}Al_{0.02}Mg_{0.01}$ $\Sigma_{3.89}P_{3.92}O_{16}(OH)_{3}$ \cdot 5H_{2.11}O. Kapundaite is triclinic, space group $P\overline{1}$, a = 6.317(5), b = 7.698(6), c = 9.768(7) Å, $\alpha = 105.53(1)^{\circ}$, $\beta = 99.24(2)^{\circ}$, $\gamma = 90.09(2)^{\circ}$, V = 451.2(6) Å³, and Z = 1. The five strongest lines in the powder X-ray diffraction pattern are $[d_{obs} \text{ in } \text{\AA}(I)(hkl)]$: 9.338 (100) (001), 2.753 (64) (211), 5.173 (52) (011), 2.417 (48) (213, 202, 014), and 3.828 (45) (021). The crystal structure was solved from single-crystal X-ray diffraction data using synchrotron radiation and refined to $R_1 = 0.1382$ on the basis of 816 unique reflections with $F_0 > 4\sigma F$. The structure of kapundaite is based on a unique corrugated octahedral-tetrahedral sheet, which is composed of two types of chains parallel to *a*. Kapundaite is structurally related to mélonjosephite. The mineral is named for the nearest town to the quarry.

Keywords: Kapundaite, new mineral, phosphate, Toms phosphate quarry, crystal structure, octahedral-tetrahedral sheet, mélonjosephite