The crystal chemistry and crystal structure of kuksite, Pb₃Zn₃Te⁶⁺P₂O₁₄, and a note on the crystal structure of yafsoanite, (Ca,Pb)₃Zn(TeO₆)₂

STUART J. MILLS,^{1,*} ANTHONY R. KAMPF,² UWE KOLITSCH,^{3,4} ROBERT M. HOUSLEY,⁵ AND MATI RAUDSEPP¹

¹Department of Earth and Ocean Sciences, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada ²Mineral Sciences Department, Natural History Museum of Los Angeles County, 900 Exposition Boulevard, Los Angeles, California 90007, U.S.A ³Mineralogisch-Petrographische Abt., Naturhistorisches Museum, Burgring 7, A-1010 Wien, Austria ⁴Institut für Mineralogie und Kristallographie, Geozentrum, Universität Wien, Althanstrasse 14, A-1090 Wien, Austria ⁵Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, California 91125, U.S.A.

ABSTRACT

New discoveries of kuksite, $Pb_3Zn_3Te^{6+}P_2O_{14}$, from the Black Pine mine, Montana, and Blue Bell claims, California, have enabled a detailed crystal-chemical study of the mineral to be undertaken. Single-crystal X-ray structure refinements of the structure indicate that it is isostructural with dugganite, $Pb_3Zn_3Te^{6+}As_2O_{14}$, and joëlbruggerite, $Pb_3Zn_3(Sb^{5+},Te^{6+})As_2O_{13}(OH,O)$. Kuksite from the Black Pine mine crystallizes in space group *P*321, with unit-cell dimensions *a* = 8.392(1), *c* = 5.204(1) Å, *V* = 317.39(8) Å³, and Z = 1 (R_1 = 2.91% for 588 reflections [$F_0 > 4\sigma F$] and 3.27% for all 624 reflections), while Blue Bell kuksite has the unit cell *a* = 8.3942(5), *c* = 5.1847(4) Å, and *V* = 316.38(4) Å³ (R_1 = 3.33% for 443 reflections [$F_0 > 4\sigma F$] and 3.73% for all 483 reflections). Chemical analyses indicate that solid-solution series exist between kuksite, dugganite, and joëlbruggerite. Raman spectroscopic and powder X-ray diffraction data are also presented for samples from both occurrences.

The crystal structure of the chemically related species yafsoanite, $(Ca,Pb)_3Te_2^{6+}Zn_3O_{12}$, from the type locality (Delbe orebody, Kuranakh Au Deposit, Aldan Shield, Saha Republic, Russia), has been refined to $R_1 = 2.41\%$ for 135 reflections $[F_0 > 4\sigma F]$ and 3.68% for all 193 reflections. A garnet-type structure has been confirmed and significantly improves upon the results of an earlier structure determination.

Keywords: Kuksite, dugganite, joëlbruggerite, Black Pine, Blue Bell, tellurate, yafsoanite, Delbe orebody, crystal structure