American Mineralogist, Volume 94, pages 1039–1044, 2009

Thermoelasticity of ε-FeSi to 8 GPa and 1273 K

MATTHEW L. WHITAKER,^{1,2,*} WEI LIU,² QIONG LIU,² LIPING WANG,² AND BAOSHENG LI²

¹Department of Geosciences, Stony Brook University, Stony Brook, New York 11794-2100, U.S.A. ²Mineral Physics Institute, Stony Brook University, Stony Brook, New York 11794-2100, U.S.A.

ABSTRACT

The elastic properties of ε -FeSi were investigated at high temperature and pressure using a combination of ultrasonic interferometry and synchrotron radiation up to 8 GPa and 1273 K. The unit-cell volumes and sound velocity data were fit to third-order finite-strain equations with adiabatic temperature conversions to maintain a thermodynamically internally consistent data set. The adiabatic zero-pressure bulk and shear moduli and their first pressure and temperature derivatives were obtained from this fitting: $K_{s0} = 168.9(7)$ GPa, $G_0 = 116.5(3)$ GPa, $K_{s0}' = 6.6(2)$, $G_0' = 2.9(1)$, $(\partial K_{s0}/\partial T)_P = -0.023(1)$ GPa/K, $(\partial G_0/\partial T)_P = -0.030(1)$ GPa/K. This study presents the first complete thermodynamically consistent set of elastic moduli and their temperature and pressure derivatives.

Keywords: Ultrasonic interferometry, equation of state, iron silicide, elastic properties, high pressure, high temperature