Amphibole equilibria in mantle rocks: Determining values of mantle a_{H_2O} and implications for mantle H_2O contents

WILLIAM M. LAMB* AND ROBERT K. POPP

Department of Geology and Geophysics, Texas A&M University, College Station, Texas 77843, U.S.A.

ABSTRACT

H_2O can affect the thermophysical properties of the mantle, and nominally anhydrous mantle minerals, such as olivine, pyroxenes, and garnet, may be an important reservoir of mantle H_2O. However, the H_2O content of nominally anhydrous mantle minerals now at the Earth’s surface may not always reflect mantle values. It is, therefore, desirable to develop different techniques to estimate mantle H_2O contents, or values of the activity of H_2O (a_{H_2O}) at the conditions of equilibration in the mantle. To examine the potential of amphibole equilibria to determine values of mantle a_{H_2O}, the chemical compositions of co-existing amphibole, olivine, two-pyroxenes, and spinel from a mantle xenolith, sample DH101E of McGuire et al. (1991), were used to estimate values of pressure (P), temperature (T), and a_{H_2O}.

A value of a_{H_2O} was estimated from pargasite dehydration equilibria using chemical compositions of minerals as the basis for estimating activities of end-members in the natural phases (e.g., the activity of forsterite in olivine). These calculations were performed with the THERMOCALC software package and, at an estimated maximum T and P of 900 °C and 20 kbar, they yield an estimated value of $a_{H_2O} \approx 0.02$ for sample DH101E. The application of oxy-amphibole equilibrium, as described by Popp et al. (2006a, 2006b), using the composition of the amphibole in DH101E yields a value of the log of the hydrogen fugacity (f_{H_2O}) of –1.37. This value of f_{H_2O} together with the estimated log f_{O_2} of –9.9 yields a value of $a_{H_2O} \approx 0.0005$ for sample DH101E. The lower estimated a_{H_2O} compared to that estimated from dehydration equilibria may reflect a slight loss of H from amphibole in the post-formation environment, but both types of amphibole equilibria are consistent with a low value of a_{H_2O}.

Values of mantle a_{H_2O} can be used to predict the H_2O content of mantle olivines. At 900 °C and 20 kbar, the olivine in a sample that equilibrates at $a_{H_2O} < 0.04$, as estimated for sample DH101E, should contain <10 wt ppm H_2O. This value is consistent with the lower end of the range of measured H_2O contents of mantle olivines (~4-400 wt ppm). Thus, estimates of values of a_{H_2O} from amphibole equilibria can produce useful predictions of both the activity of H_2O as well as the H_2O content of nominally anhydrous mantle minerals.

Keywords: Amphibole, mantle H_2O activity, H_2O in mantle, amphibole equilibria, phase equilibria, mantle a_{H_2O}, thermobarometry, thermodynamics

INTRODUCTION

Trace amounts of H_2O have a large effect on the physical properties of upper mantle rocks, including viscosity, conductivity, and possibly seismic properties (Karato and Jung 1998; Karato 1987; Ranalli 1995). Deformation experiments on olivine, for example, have shown that the creep rate is proportional to the fugacity of H_2O (f_{H_2O}) in both the dislocation creep and diffusion creep regimes (Mei and Kohlstedt 2000a, 2000b). Consequently, a complete understanding of mantle rheology will require accurate estimates of the values of the activity of H_2O (a_{H_2O}) for different regions of the mantle ($a_{H_2O} = f_{H_2O}/f_{H_2O}^0$; where $f_{H_2O}^0$ is the fugacity of pure H_2O at the P-T conditions of interest).

The availability of H_2O also has a significant effect on the quantity and compositions of liquids derived from anatexis of the mantle (Gaetani and Grove 1998; Green and Falloon 1998). The presence of a melt phase may reduce the viscosity of the mantle. On the other hand, the melting process probably removes H_2O from the solid phases, which would increase the viscosity of the residual mantle if the melt migrated upward (Hirth and Kohlstedt 1996). Thus, according to Hirth and Kohlstedt (1996), melting at mid-ocean ridges is responsible for the rheological difference between the lithospheric mantle and the asthenosphere.

Olivine, clinopyroxene, orthopyroxene, and garnet comprise the bulk of the Earth’s upper mantle. The presence of small amounts of hydrogen in these nominally anhydrous minerals (NAMs) is an important line of evidence indicating that the mantle contains small amounts of “water.” The “water” contained in mantle-derived NAMs is probably present in the form of hydrogen defects and may not be molecular H_2O (e.g., Wright 2006). However, in the literature, the H content of NAMS has also been expressed in terms of the weight or mole equivalent of H_2O; both designations will be used in the discussion below.

The H_2O content of mantle pyroxenes ranges from ~30 to 1100 wt ppm H_2O (Skogby 2006). Olivines and garnets from the mantle typically contain less H than mantle pyroxenes; the