High-pressure study on lead fluorapatite

XI LIU, SEAN R. SHIEH,* MICHAEL E. FLEET, AND ARSLAN AKHMETOV

Department of Earth Sciences, University of Western Ontario, London, Ontario, N6A 5B7, Canada

ABSTRACT

The compressional behavior of a synthetic lead fluorapatite $[Pb_{9.35}(PO_4)_6F_2]$ has been investigated in situ up to about 16.7 GPa at 300 K, using a diamond-anvil cell and synchrotron X-ray diffraction. We find that the compressibility of lead fluorapatite is significantly different from that of fluorapatite $[Ca_{10}(PO_4)_6F_2]$, chlorapatite $[Ca_{10}(PO_4)_6Cl_2]$, and hydroxylapatite $[Ca_{10}(PO_4)_6(OH)_2]$: lead fluorapatite is much more compressible, and elastically isotropic in the investigated pressure range. The pressurevolume data fitted to the third-order Birch-Murnaghan equation yield an isothermal bulk modulus (K_T) of 54.3(18) GPa and the pressure derivative (K_T') of 8.1(6). If K_T' is fixed at 4, the obtained K_T is 68.4(16) GPa, which is approximately only two-thirds of the isothermal bulk modulus of the calcium apatites.

Keywords: Lead fluorapatite, compressibility, synchrotron X-ray diffraction, isothermal bulk modulus, high pressure