American Mineralogist, Volume 93, pages 1654–1658, 2008

Raman spectroscopy of CaIrO₃ postperovskite up to 30 GPa

JUSTIN HUSTOFT,^{1,*} SANG-HEON SHIM,^{1,†} ATSUSHI KUBO,² AND NORIMASA NISHIYAMA^{2,}‡

¹Department of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, U.S.A. ²Center for Advanced Radiation Sources, University of Chicago, Chicago, Illinois 60637, U.S.A.

ABSTRACT

We have measured Raman spectra of the postperovskite (PPv) phase in CaIrO₃ up to 30 GPa to constrain the Grüneisen parameter (γ). We identified a total of 4 strong modes between 200 and 650 cm⁻¹, which is in contrast with the Raman spectra of Mn₂O₃ and MgGeO₃-PPv where at least nine different modes have been detected. We found no sign of a phase transition in the Raman spectra of PPv CaIrO₃, which supports the stability of the PPv phase up to 30 GPa and room temperature in CaIrO₃. The spectroscopic Grüneisen parameter, $\gamma_{sp,0} = 1.66 \sim 1.72$, constrained from our Raman data, is in excellent agreement with the thermodynamic Grüneisen parameter, $\gamma_{th,0} = 1.75 \pm 0.05$, calculated from recent XRD measurements (Martin et al. 2007) on CaIrO₃-PPv synthesized at high pressure and temperature similar to our starting material. Our result suggests that γ_{sp} constrained by Raman measurements provides a reasonable estimate on the γ_{th} of the PPv phase in CaIrO₃.

Keywords: Postperovskite, CaIrO₃, Gruneisen parameter, Raman sepctroscopy, thermal equation of state