A simple predictive model for the thermal expansion of AlSi₃ feldspars

GUY L. HOVIS,^{1,*} JOANNA R. MORABITO,¹ AMY SPOONER,² ANDREW MOTT,³ ERIK L. PERSON,⁴ C. MICHAEL B. HENDERSON,⁵ JACQUES ROUX,⁶ AND DANIEL HARLOV⁷

¹Department of Geology and Environmental Geosciences, Lafayette College, Easton, Pennsylvania 18042, U.S.A.
²O'Brien and Gere Engineers, 435 New Karner Road, Albany, New York 12205, U.S.A.
³Department of Geological and Environmental Sciences, Stanford University, Stanford, California 94305, U.S.A.
⁴Department of Earth and Environmental Science, University of Pennsylvania, Philadelphia, Pennsylvania 19104, U.S.A.
⁵School of Earth, Atmospheric, and Environmental Sciences, The University of Manchester, Manchester, M13 9PL, U.K.
⁶Physique des Minéraux et des Magmas, IPGP, 4 Place Jussieu, 75252 Paris Cedex 05, France
⁷GeoForschungsZentrum-Potsdam, Telegrafenberg, D-14473 Potsdam, Germany

ABSTRACT

We have investigated the thermal expansion of several synthetic feldspars, including Li-feldspar, rubicline (Rb-microcline), Rb-sanidine, and buddingtonite (NH₄-feldspar). When analyzed in conjunction with earlier data on both ordered and disordered Na- and K-feldspars, it is clear that the coefficient of thermal expansion (α) decreases dramatically, and linearly, with increasing room-temperature volume. For "AlSi₃" feldspars, then, chemical expansion limits thermal expansion. The relationship between α and room-temperature volume provides a useful predictive tool based simply on the volume of a feldspar at room temperature. This relationship also reveals that volumes of K-Na mixing in naturally occurring alkali feldspars decrease with increasing temperature.

Keywords: Thermal expansion, feldspars