Chlorite and biotite weathering, Fe2+-rich corrensite formation, and Fe behavior under low P_{O_2} conditions and their implication for Precambrian weathering

HIROKAZU SUGIMORI, 1 TERUKI IWATSUKI, 2 AND TAKASHI MURAKAMI1,*

1Department of Earth and Planetary Science, University of Tokyo, Hongo, Tokyo 113-0033, Japan
2Japan Atomic Energy Agency, Horonobe-Cho, Hokkaido 098-3224, Japan

ABSTRACT

Fresh and weathered granite from drill cores in Tono, Gifu, Japan, was examined to understand weathering products and the mechanisms of chlorite and biotite weathering under low P_{O_2} conditions. A fresh sample from 365 m depth, a slightly weathered light-green sample from 367 m depth, and a nearly fresh sample from 369 m depth (but with brown stains on fractures), were investigated. The XRD, SEM, EMPA, and TEM analysis of green grains present within chlorite, biotite, and plagioclase grains and in veins was found to be Fe2+-rich corrensite [about 40 wt\% FeO with Fe/(Fe + Mg) = 0.94]. The corrensite is interpreted to have formed from chlorite and biotite via a dissolution-precipitation mechanism. The $<$2 \textmu m fraction of the weathered sample had an Fe2+/\Sigma Fe value of 0.69, which, when combined with the presence of amorphous Fe3+ (hydr)oxides confirmed by TEM, indicates that the Fe2+/\Sigma Fe value of corrensite is >0.69. These results indicate that on dissolution of chlorite and biotite, Fe2+ was transported as Fe2+ and precipitated as Fe2+-rich corrensite and a part of the dissolved Fe2+ was oxidized to amorphous Fe3+ (hydr)oxides under low P_{O_2} conditions. The formation of Fe2+-rich corrensite and that of Fe2+-rich smectite or vermiculite in the laboratory at 1 atm of P_{CO_2}, and $\leq3 \times 10^{-5}$ atm of P_{O_2} (Murakami et al. 2004) suggest that a possible Fe3+-bearing product during Precambrian weathering is Fe2+-rich sheet silicates but not siderite.

Keywords: Weathering, corrensite, Fe behavior, low O_2, atmospheric evolution, granite, TEM

INTRODUCTION

Biotite and chlorite are major Fe-bearing minerals at the surface of the continental crust, and their weathering processes under oxic conditions have been intensively studied (Barnhisel and Bertsch 1989; Fanning et al. 1989; Righi and Mennier 1995). Biotite and chlorite are converted to kaolinite through vermiculite (or smectite) with the formation of Fe3+ (hydr)oxides. The formation of mixed-layer minerals of vermiculite with biotite and chlorite often occurs during oxic weathering (e.g., Kogure and Murakami 1996; Banfield and Murakami 1998). Similarly, various geological and geochemical records have shown that atmospheric oxygen increased during the Precambrian (Holland 2006). The chemical compositions of Precambrian paleosols, fossil weathering profiles, are one of the important parameters used to estimate the quantitative pattern of changes in P_{O_2}, suggesting that the first irreversible oxygen rise in the Earth’s history took place between about 2.5 and 2.0 Ga (Rye and Holland 1998). Oxidation of Fe2+ especially under low P_{O_2} conditions is central to such an estimation because the rate of Fe2+ oxidation is directly related to P_{O_2} levels (Stumm and Lee 1961). Almost all Fe2+ dissolved from primary Fe3+-bearing minerals such as biotite and chlorite is oxidized to form Fe3+ (hydr)oxides under modern, oxic conditions. In contrast, under low P_{O_2} conditions, it is likely that part of the dissolved Fe2+ released from the dissolution of primary minerals flows out of the weathering profile and some precipitates as secondary Fe3+-rich minerals as well as Fe3+ (hydr)oxides. Therefore, quantitative estimation of oxygenation of a paleosol requires a deeper understanding of the weathering processes of biotite and chlorite under low P_{O_2} conditions.

The samples used for the present study were collected from...