American Mineralogist, Volume 93, pages 477-482, 2008

Vibrational properties of δ-AlOOH under pressure

JUN TSUCHIYA,^{1,*} TAKU TSUCHIYA,¹ AND RENATA M. WENTZCOVITCH²

¹Geodynamics Research Center, Ehime University, 2-5 Bunkyo-cho, Matsuyama, Ehime 790-8577, Japan ²Department of Chemical Engineering and Materials Science, Minnesota Supercomputing Institute for Digital Technology and Advanced Computation, University of Minnesota, 421 Washington Avenue SE, Minneapolis, Minnesota 55455, U.S.A.

ABSTRACT

We have performed first-principles calculations to investigate the behavior of the hydrogen bond in δ -AlOOH under pressure. The highest OH-stretching A₁ and B₂ mode frequencies decrease under pressure leading to hydrogen bond symmetrization. After hydrogen bond symmetrization, the corresponding frequencies gradually increase. This softening and subsequent hardening of the OH bonds is a good spectroscopic indicator of hydrogen bond symmetrization and is observed in our GGA static calculations at ~30 GPa without considering tunneling effects. We have also carried out calculations of Raman peak intensities in several supercells with various hydrogen orderings to investigate the potential effect of H-disorder on the Raman spectrum of δ -AlOOH. Our results suggest that the four broad Raman bands observed experimentally in the range of OH-stretching mode frequencies could originate in H-disorder in this phase.

Keywords: Hydrogen bond, hydrous mineral, first-principles calculation, vibrational property, high pressure