LETTER

Effects of irradiation damage on the back-scattering of electrons: Silicon-implanted silicon

LUTZ NASDALA,^{1,*} ANDREAS KRONZ,² DIETER GRAMBOLE,³ AND GHISLAIN TRULLENQUE⁴

¹Institut für Mineralogie und Kristallographie, Universität Wien, A-1090 Wien, Austria
²Geowissenschaftliches Zentrum der Georg-August-Universität Göttingen, D-37077 Göttingen, Germany
³Forschungszentrum Dresden-Rossendorf, Institut für Ionenstrahlphysik und Materialforschung, D-01328 Dresden, Germany
⁴Institut für Geowissenschaften, Johannes Gutenberg-Universität, D-55099 Mainz, Germany

ABSTRACT

Radiation damage in a (initially crystalline) silicon wafer was generated by microbeam ion implantation with 600 keV Si⁺ ions (fluence 5×10^{14} ions/cm²). To produce micro-areas with different degrees of damage, 14 implantations at different temperatures (between 23 and 225 °C) were done. The structural state of irradiated areas was characterized using Raman spectroscopy and electron back-scatter diffraction. All irradiated areas showed strong structural damage in surficial regions (estimated depth <1 µm), and at implant substrate temperatures of below 130 °C, the treatment caused complete amorphization. Back-scattered electron (BSE) image intensities correlate with the degree of irradiation damage; all irradiated areas were higher in BSE than the surrounding host. Because there were no variations in the chemical composition and, with that, no \overline{Z} contrast in our sample, this observation again supports the hypothesis that structural radiation damage may strongly affect BSE images of solids.

Keywords: Back-scattered electron images, Raman spectroscopy, electron back-scatter diffraction, radiation damage, silicon