Scandium-45 NMR of pyrope-grossular garnets: Resolution of multiple scandium sites and comparison with X-ray diffraction and X-ray absorption spectroscopy

NAMJUN KIM,¹ JONATHAN F. STEBBINS,^{1,*} SIMONA QUARTIERI,^{2,3} AND ROBERTA OBERTI³

¹Department of Geological and Environmental Sciences, Stanford University, Stanford, California 94305-2115, U.S.A. ²Dipartimento di Scienze della Terra, Università di Messina, Salita Sperone 31, I-98166 Messina S. Agata, Italy ³CNR, Istituto di Geoscienze e Georisorse, unità di Pavia, via Ferrata 1, I-27100 Pavia, Italy

ABSTRACT

Here we present ⁴⁵Sc and ²⁷Al NMR results on Sc-doped pyrope ($Mg_3Al_2Si_3O_{12}$), grossular ($Ca_3Al_2Si_3O_{12}$), and an 80% grossular-20% pyrope garnet (grs80) that have recently been well-studied by X-ray diffraction and X-ray spectroscopies. Clearly distinct NMR peaks are observed for Sc in the eight-coordinated X site (pyrope and grs80) and in the six-coordinated Y site (grossular and grs80). X-ray and NMR data agree that only eight-coordinated Sc is present in pyrope and that six-coordinated Sc is predominant in grossular; however, the XRD results also indicated significant X and Z site (four-coordinated M Sc in the Ca-rich garnet. Possible reasons for this apparent discrepancy are discussed. We demonstrate that ⁴⁵Sc NMR is potentially a useful new method for studies of the site occupancies of Sc³⁺ in oxides and silicates, at least in experimental systems where its concentration is a few percent or greater.

Keywords: Crystal structure, pyrope-grossular garnet, scandium in garnet, NMR spectroscopy, pyrope-grossular garnet, scandium-45, aluminum-27