Optical absorption study of natural garnets of almandine-skiagite composition showing intervalence Fe²⁺ + Fe³⁺ → Fe³⁺ + Fe²⁺ charge-transfer transition

MICHAIL N. TARAN,^{1,*} M. DARBY DYAR,² AND STANISLAV S. MATSYUK¹

¹Institute of Geochemistry, Mineralogy and Ore Formation, National Academy of Sciences of Ukraine, Palladin Avenue 34, Kiev-142, 252680 Ukraine ²Mount Holyoke College, 50 College Street, South Hadley, Massachusetts 01075, U.S.A.

ABSTRACT

A broad (FWHM \approx 7300 cm⁻¹) intense band at ~21700 cm⁻¹ in the optical absorption spectra of natural Fe²⁺, Fe³⁺-rich garnets is attributed to electronic intervalence charge-transfer transitions (IVCT), ^{VIII}Fe²⁺ + ^{VI}Fe³⁺ \rightarrow ^{VIII}Fe³⁺ + ^{VI}Fe²⁺. In Fe³⁺, Fe²⁺-bearing garnets of predominantly almandine compositions, this band causes yellowish tinges in addition to the pink color, typical of pure Fe³⁺-free almandines. In garnets from deeper-seated mafic granulites from kimberlite pipes in Siberia with high skiagite (Fe³⁺Fe²⁺Si₃O₁₂) contents, IVCT causes intense brownish-yellow colors. The relatively high energy of the band (~21 700 cm⁻¹) compared to diverse minerals showing IVCT between Fe²⁺ and Fe³⁺ in non-equivalent, dodecahedral and octahedral sites of the garnet structure. Band intensity is directly correlated with the product of Fe²⁺ and Fe³⁺ as measured by Mössbauer spectroscopy. The energy of the IVCT band is nearly independent of temperature, whereas its intensity decreases slightly with increasing temperature. Pressure induces a weak shift of the band to lower energies, $\Delta v/\Delta P \approx -75$ cm⁻¹/GPa, but intensity of the bands remains practically unchanged. Such temperature and pressure dependencies are quite different from those in other minerals showing IVCT between Fe²⁺ and Fe³⁺ in equivalent octahedral positions of structure.

Keywords: Garnets, optical absorption spectra, Mössbauer spectra, iron ions, electronic dd transitions, intervalence charge-transfer transitions