Reversed phase equilibrium constraints on the stability of Mg-Fe-Al biotite

R.G. Berman,1,* L.Ya. Aranovich,2 D.G. Rancourt,3 and P.H.J. Mercier4

1Geological Survey of Canada, 615 Booth Street, Ottawa, Ontario, Canada K1A 0E9
2Institute of Geology of Ore Deposits, Petrography, Mineralogy, and Geochemistry, 119017 Moscow, Russia
3Department of Physics, University of Ottawa, Ottawa, Ontario, Canada K1N 6N5
4Institute for Chemical Process and Environmental Technology, National Research Council Canada, 1200 Montreal Road, Ottawa, Ontario, Canada K1A 0R6

ABSTRACT

The stability of Mg-Fe-Al biotite has been investigated with reversed phase-equilibrium experiments on four equilibria. Experimental brackets in pure H2O and H2O-CO2 mixtures for the equilibrium:

phlogopite + 3 quartz = enstatite + sanidine + H2O (1)

are in good agreement with previous experiments in mixed-volatile fluids (Bohlen et al. 1983) and H2O-KCl solutions (Aranovich and Newton 1998), while indicating a reduced stability field for phlogopite compared to previous data in pure H2O (Wood 1976; Peterson and Newton 1989). Aluminum solubility in biotite has been determined in the Fe-, Mg-, and Fe-Mg systems from reversed phase-equilibrium data for the equilibria:

3 eastonite + 6 quartz = 2 phlogopite + 3 sillimanite + sanidine + H2O (2)
3 siderophyllite + 6 quartz = 2 annite + 3 sillimanite + sanidine + H2O (3)

over the P-T range ~600–750 °C and 1.1–3.4 kbar. Over the investigated temperatures, the brackets define nominal Al saturation levels of 1.60 ± 0.04 in Mg-biotite, 2.08 ± 0.05 in Fe-biotite, and 1.81 ± 0.03 in biotite with Fe/(Fe + Mg) = 0.43–0.44. The slight decrease in Al with increasing T and decreasing P suggested by the data is less than experimental uncertainties.

Compared to biotite on the Phl–Ann join, Al-saturated biotites have a markedly larger stability field, particularly in the Fe-system. This effect has been quantified in the Fe-system with one reversal between 691–709 °C at 2.4 kbar for the equilibrium:

biotite + sillimanite + quartz = almandine + sanidine + H2O (4)

The combined experimental results place tight constraints on the thermodynamic properties of phlogopite, annite, eastonite, and siderophyllite. The resulting nonzero (∆H298 = –9.4 kJ/mol, with ∆S = ∆V = 0) energetics for the internal equilibrium:

Eastonite + 2/3 Annite = 2/3 Phlogopite + Siderophyllite (5)

reflect strong Fe-Al affinity in biotite, which has a marked effect on thermobarometers involving biotite.

Keywords: Biotite, phase equilibria, experimental petrology, mixing properties, annite, phlogopite, siderophyllite, eastonite