hardly detract from the large amount of fascinating information provided. Although the drawings and diagrams are clear and straightforward, many of the photographs are grainy and therefore lose some of the intended information. The only other potential shortfall is that the number of references in Appendix A could have been greatly expanded.

To summarize, this textbook will not only appeal to the aforementioned students preparing for the British Gemmological Association’s Preliminary and Diploma Examinations, but to gemologists in general (especially the Gemological Institute of America), mineralogists, proficient jewelers, and anyone in the general population that has a love of gems.

Florie Caporuscio
2708 Plazuela Serena
Santa Fe, New Mexico 87505, U.S.A.

ERRATUM

Icosahedral coordination of phosphorus in the crystal structure of melliniite, a new phosphide mineral from the Northwest Africa 1054 acapulcoite by Giovanni Pratesi, Luca Bindi, and Vanni Moggi-Cecchi (vol. 91, 451–454, 2006, DOI: 10.2138/am.2006.478).

Structure determination performed by us demonstrated that P atoms in melliniite are coordinated by 12 metal atoms in a somewhat distorted icosahedral arrangement, but our claim that melliniite is the first phase with so high a coordination number for phosphorus is not true. Sergey N. Britvin and Sergey V. Krivovichev (St. Petersburg State University) kindly pointed out to us that icosahedral coordination of phosphorus in phosphides has been known for at least 20 years. It has been observed, for instance, in the structures of MnNi3P4 (Chaudouet et al. 1983) and MnNi1.7P0.3 (Orishchin et al. 1985). However, it seems to be true that melliniite is the first natural phase with an icosahedral coordination of phosphorus and thus our suggestions about the role of phosphides as P reservoirs in deep planetary interiors are correct.

REFERENCES CITED
