American Mineralogist, Volume 91, pages 961–964, 2006

LETTER

Single-crystal elastic properties of dense hydrous magnesium silicate phase A

CARMEN SANCHEZ-VALLE,^{1,*} STANISLAV V. SINOGEIKIN,¹ JOSEPH R. SMYTH,² AND JAY D. BASS¹

¹Department of Geology, University of Illinois, Urbana, Illinois 61801, U.S.A. ²Department of Geological Sciences, University of Colorado, Boulder, Colorado 80309, U.S.A.

ABSTRACT

The single-crystal elastic properties of phase A have been investigated by Brillouin spectroscopy at ambient conditions. The Voigt-Reuss-Hill average for the adiabatic bulk and shear moduli are K_S = 106(1) GPa and μ = 61(1) GPa, respectively. The present acoustic measurements resolve discrepancies between the bulk moduli obtained in earlier compression studies. The axial compressibility of the hexagonal (*P*6₃) structure is highly anisotropic with the *c*-axis, which is perpendicular to the distorted close-packed layers, approximately 21% stiffer than the *a*-axis, in agreement with previous compression studies. The hydration of forsterite to phase A decreases the bulk and shear moduli by about 18 and 21%, respectively, while both compressional V_P and shear V_S wave velocities decrease by about 7%. These results suggest that water could be identified seismologically if phase A is present in abundance in cold subducted slabs.

Keywords: Single-crystal elasticity, phase A, Brillouin spectroscopy, water in subduction zones