Pseudojohannite from Jáchymov, Musonoï, and La Creusaz: A new member of the zippeite-group

JOËL BRUGGER,1,2,* KIA SHEREER WALLWORK,3† NICOLAS MEISSER,4 ALLAN PRING,1 PETR ONDRUŠ,5 AND JIŘÍ ČEJKA6

1South Australian Museum, North Terrace, Adelaide, South Australia 5000, Australia
2School of Earth and Environmental Sciences, University of Adelaide, Adelaide, South Australia 5005, Australia
3Bragg Institute, ANSTO, PMB 1, Menai, New South Wales 2234, Australia
4Museum of Geology and Institute of Mineralogy and Geochemistry, University, UNIL-BFSH-2, CH 1015 Lausanne, Switzerland
5Czech Geological Survey, Geologická 6, CZ–15200 Prague, Czech Republic
6National Museum, Václavské nám. 68, CZ–11579 Prague 1, Czech Republic

ABSTRACT

Pseudojohannite is a hydrated copper(II) uranyl sulfate described from Jáchymov, Northern Bohemia, Czech Republic (type locality). Pseudojohannite also occurs at the Musonoï quarry near Kolwezi, Shaba, Congo, and the La Creusaz prospect, Western Swiss Alps. At all three localities, pseudojohannite formed through the interaction of acid sulfate mine drainage waters with uraninite (Jáchymov and La Creusaz) or uranyl silicates (Musonoï). Pseudojohannite forms moss green, non-UV-fluorescent aggregates consisting of irregularly shaped crystals measuring up to 25 μm in length and displaying an excellent cleavage parallel to (101). d_{min} is 4.31 g/cm², d_{max} 4.38 g/cm², and the refractive indices are n_{min} = 1.725 and n_{max} = 1.740.

A high-resolution synchrotron powder diffraction pattern on the material from Musonoï shows that pseudojohannite is triclinic (P1 or P1̅), with a = 10.027(1) Å, b = 10.822(1) Å, c = 13.396(1) Å, α = 87.97(1)°, β = 109.20(1)°, γ = 90.89(1)°, V = 1371.9(5) Å³. The location of the uranium and sulfur atoms in the cell was obtained by direct methods using 1807 reflections extracted from the powder diffractogram. Pseudojohannite contains zippeite-type layers oriented parallel to (101). The empirical chemical formula calculated for a total of 70 O atoms is Cu₆.₅²U₇.₈₅S₄.₀₂O₇₀H₅₅.₇₄, leading to the simplified chemical formula Cu₆[(UO₂)₄O₄(SO₄)₂]²(OH)₆·25H₂O. The distance of 9.16 Å between the uranyl-sulfate sheets in pseudojohannite shows that neighboring layers do not share O atoms with the same CuΦ₆, [Φ (O, OH)] distorted octahedrons, such as in magnesium-zippeite. Rather, it is expected that CuΦ₆ forms a layer bound to the zippeite-type layers by hydrogen bonding, as in marécottite, or one apex of the CuΦ₆ polyhedron only is shared with a zippeite-type layer, as in synthetic SZIPPMg. The higher number of cations in the interlayer of pseudojohannite (Cu:S = 1.6:1) compared to marécottite (3:4) and SZIPPMg (1:1) indicates that pseudojohannite has a unique interlayer topology.

Ab-initio powder structure solution techniques can be used to obtain important structural information on complex micro-crystalline minerals such as those found in the weathering environment. Pseudojohannite represents a new member of the zippeite group of minerals, and further illustrates the structural complexity of zippeite-group minerals containing divalent cations, which have diverse arrangements in the interlayer. Pseudojohannite and other divalent zippeites are common, easily overlooked minerals in acid drainage environments around uranium deposits and wastes.

Keywords: New mineral, pseudojohannite, uranyl sulfate, XRD data, IR spectroscopy, Jáchymov, La Creusaz, Musonoï

INTRODUCTION

Pseudojohannite (IMA-2000-019) was described as a new mineral from Jáchymov (St. Joachimsthal), Northern Bohemia, Czech Republic (Ondruš et al. 1997, 2003), with chemical formula Cu₆[(UO₂)₄O₄(SO₄)₂]²(OH)₆·14H₂O and a triclinic unit cell with a = 13.754(2) Å, b = 9.866(1) Å, c = 8.595(2) Å, α = 103.84(2)°, β = 90.12(2)°, γ = 108.57(2)°, V = 1081.3 (4) Å³. The mineral name acknowledges the chemical and paragenetical relationship with johannite Cu(UO₂)₄(SO₄)₂(OH)₂·8H₂O (Mereiter 1982).

This paper describes two new occurrences of this rare uranyl sulfate mineral at Musonoï, Shaba, Congo, and La Creusaz, Western Swiss Alps. Based on analysis of the synchrotron powder diffraction patterns obtained on pseudojohannite from Musonoï, we redefine the unit cell, and consequently the chemical formula of pseudojohannite, and demonstrate that pseudojohannite belongs to the zippeite-group of minerals. Because the mineralogical data on pseudojohannite are only briefly described in two separate publications (Ondruš et al. 1997, 2003), we also present a complete description of the holotype material.