American Mineralogist, Volume 91, pages 702-705, 2006

Ganterite, the barium mica Ba_{0.5}K_{0.5}Al₂(Al_{1.5}Si_{2.5})O₁₀(OH)₂, from Oreana, Nevada

CHI MA* AND GEORGE R. ROSSMAN

Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, California 91125-2500, U.S.A.

ABSTRACT

The barium dioctahedral layer silicate, ganterite, was identified from the Lincoln Hill dumortierite deposit near Oreana, Nevada, based on electron microprobe, electron-backscatter diffraction (EBSD), and Raman spectrum microanalyses. This phase occurs with dumortierite, barite, and muscovite in a vein specimen formed by hydrothermal alteration. Back-scattered electron images of the muscovite from this locality show extensive zonation of the BaO content with regions of high Ba concentrations up to 15 μ m in dimension. Electron microprobe analyses of these regions reveal a composition (Ba_{0.53} K_{0.37}Na_{0.05})_{S=0.95} (Al_{2.00}Ti_{0.01})_{S=2.01} [Al_{1.51}Si_{2.49}O₁₀](OH)₂ or, ideally, (Ba_{0.5}K_{0.5})Al₂(Al_{1.5}Si_{2.5})O₁₀(OH)₂. This composition corresponds to the recently described mica, ganterite. Complete solid solutions between muscovite and ganterite were observed that range from 0.60% up to 18.12 wt% BaO. The electron-backscatter diffraction and Raman spectra of this phase are essentially indistinguishable from those of muscovite confirming that ganterite has a mica structure.

Keywords: Ganterite, mica, barium, Oreana, Nevada