Electrical conductivities of pyrope-almandine garnets up to 19 GPa and 1700 °C

CLAUDIA ROMANO,1,* BRENT T. POE,2,3 NADIA KREIDIE,1 AND CATHERINE A. MCCAMMON4

1Dipartimento di Scienze Geologiche, Università degli Studi di Roma Tre, Roma, Italy
2Dipartimento di Scienze della Terra, Università degli Studi “G. D’Annunzio”—Chieti, Italy
3Istituto Nazionale di Geofisica e Vulcanologia, Roma, Italy
4Bayerisches Geoinstitut, University of Bayreuth, D-95440 Bayreuth, Germany

ABSTRACT

Electrical conductivities of polycrystalline garnets ranging in chemical composition from almandine (Fe3Al2Si3O12) to pyrope (Mg3Al2Si3O12) were measured at 10 GPa and 19 GPa at temperatures ranging from 300 to 1700 °C using complex impedance spectroscopy in a multianvil device. Mössbauer spectroscopy of each sample was carried out both before and after the electrical measurements to characterize the oxidation state of Fe in the almandine-bearing garnets. Similar to the behavior of other ferromagnesian silicates, the substitution of Fe for Mg along this compositional join dramatically increases electrical conductivity, but this compositional effect is reduced with increasing temperature. Conductivities increase with increasing total Fe content, as the average Fe2+-Fe3+ distance decreases. At 10 GPa, activation energies for conductivity vary smoothly with composition and increase rapidly toward the pyrope end-member composition, where it reaches a value of 2.5 eV. The results are consistent with an electrical conductivity mechanism involving small polaron mobility in the Fe-bearing garnets at 10 GPa. At 19 GPa, however, there is virtually no change in the activation energy as a function of Fe-Mg substitution for the pyrope-rich garnets. These higher pressure measurements reflect a mechanism involving oxygen-related point defects, as conductivities increase with pressure at constant T for each garnet, and the effect of pressure is greater for the more Mg-rich garnets. The data also allow for a more quantitative evaluation of the effect of chemical composition, specifically Fe-Mg substitution, on the electrical conductivity profile of the mantle, using a recently developed laboratory-derived model. We apply the model using these data to a portion of the transition zone between 520 and 660 km, in which we vary the garnet composition from Py100 to Py85Alm15. Although only a minor effect on bulk mantle conductivity results, we conclude that the overall garnet composition may, however, be important in characterizing the magnitude of any EC discontinuity with respect to the above-lying mantle.

Keywords: Electrical conductivity, pyrope-almandine, high pressure, cation substitution

INTRODUCTION

For several decades laboratory studies have taken advantage of the highly sensitive correlations between the electrical properties of mantle minerals and composition, temperature and pressure to better understand the mineralogy of the deep mantle (Duba et al. 1973; Lacam 1983; Li and Jeanloz 1990; Shankland et al. 1993). More recently, experimental studies have demonstrated success in closely approximating the mantle electrical conductivity profile derived from geophysical data (Xu et al. 1998a, 2000a; Katsura et al. 1998). A combination of the advances in experimental techniques at high pressures and merging geophysical models to characterize the electrical properties of Earth’s interior provides an additional approach to understanding the mantle, complementary to others, such as fitting mineral elastic parameters to the seismic velocity profile (Duffy and Anderson 1989; Ito and Stixrude 1992; Li et al. 2001). Garnets play an important role in any approach due to their widespread abundance in the mantle. The garnet structure can incorporate a wide range of chemical constituents and its stability can span ranges of pressure and temperature covering hundreds of kilometers in depth. Thus, knowledge of how its electrical properties vary as a function of pressure, temperature, and chemical composition can be important in interpreting the mantle’s electrical conductivity profile.

In this study, we have determined the electrical conductivities of a series of garnets along the pyrope (Mg3Al2Si3O12)–almandine (Fe3Al2Si3O12) join up to 19 GPa and 1700 °C using in-situ complex impedance spectroscopy in a multianvil device. Mössbauer spectroscopy of each sample was carried out both before and after the electrical measurements to characterize the oxidation state of Fe in the almandine-bearing garnets. Similar to the behavior of other ferromagnesian silicates, the substitution of Fe for Mg along this compositional join dramatically increases electrical conductivity, but this compositional effect is reduced with increasing temperature. Conductivities increase with increasing total Fe content, as the average Fe2+-Fe3+ distance decreases. At 10 GPa, activation energies for conductivity vary smoothly with composition and increase rapidly toward the pyrope end-member composition, where it reaches a value of 2.5 eV. The results are consistent with an electrical conductivity mechanism involving small polaron mobility in the Fe-bearing garnets at 10 GPa. At 19 GPa, however, there is virtually no change in the activation energy as a function of Fe-Mg substitution for the pyrope-rich garnets. These higher pressure measurements reflect a mechanism involving oxygen-related point defects, as conductivities increase with pressure at constant T for each garnet, and the effect of pressure is greater for the more Mg-rich garnets. The data also allow for a more quantitative evaluation of the effect of chemical composition, specifically Fe-Mg substitution, on the electrical conductivity profile of the mantle, using a recently developed laboratory-derived model. We apply the model using these data to a portion of the transition zone between 520 and 660 km, in which we vary the garnet composition from Py100 to Py85Alm15. Although only a minor effect on bulk mantle conductivity results, we conclude that the overall garnet composition may, however, be important in characterizing the magnitude of any EC discontinuity with respect to the above-lying mantle.

EXPERIMENTAL METHODS

Sample syntheses

Mixtures of MgO, Fe2O3, Al2O3, and SiO2 were prepared, melted at 1650 °C in Fe-saturated Pt crucibles and then quenched to glass. These glasses were ground...