American Mineralogist, Volume 88, pages 1555-1559, 2003

Fe and Ni impurities in synthetic diamond

YUE MENG, ^{1,*} MATTHEW NEWVILLE,² STEVE SUTTON,^{2,3} JOHN RAKOVAN,⁴ AND HO-KWANG MAO⁵

¹HPCAT & Carnegie Institution of Washington, Advanced Photon Source Building 434E, 9700 S. Cass Ave., Argonne, Illinois 60439, U.S.A.
²Consortium for Advanced Radiation Source, University of Chicago, Chicago, Illinois 60439, U.S.A.
³Department of Geophysical Sciences, University of Chicago, Chicago, Illinois 60637, U.S.A.
⁴Department of Geology, Miami University, Oxford, Ohio 40565, U.S.A.
⁵Geophysical Laboratory, Carnegie Institution of Washington, D.C. 20015, U.S.A.

ABSTRACT

Using synchrotron X-ray fluorescence (XRF) microanalysis, including XRF tomography, and Xray absorption near-edge structure (XANES) analyses, the distribution, and nature of incorporation of Fe and Ni impurities in as-grown diamond crystals, synthesized under high-pressure and hightemperature (HPHT) conditions, have been characterized. We find significantly different behavior for Fe and Ni as impurities in diamond. Nickel is dispersed and sector-zoned, with concentrations in $\{111\}$ growth sectors at least 3 times those in $\{100\}$ sectors, whereas Fe exists in the form of microaggregates or clusters with no observable sector correlation. Fe *K*-edge XANES shows that Fe is oxidized in diamond and has a valence of 2+. Comparison of XANES spectra from numerous standard compounds indicates that Fe is very likely bonded with oxygen as FeO.