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INTRODUCTION

The most compelling evidence of fossil biogenic activity
from Martian meteorites comes from the chemistry and miner-
alogy of carbonate globules. Heterogeneous major-element and
stable-isotope chemistry of carbonates, and the observation of
filamentous magnetite inclusions, are reasonable expressions
of biogenic crystallization (Romanek et al. 1994; McKay et al.
1996; Valley et al. 1997; Thomas-Keprta et al. 2000). How-
ever non-biogenic mechanisms also have been proposed for
the morphology of the magnetite needles and carbonate glob-
ules (e.g., Brearley 1998; Golden et al. 2001). In the abiogenic
theories of formation, variations in the isotopic composition of
formation waters or brines, with shock metamorphic (high P
and T) overprints, are proposed to explain the small-scale iso-
topic variations observed in the carbonates (McSween and
Harvey 1999). Another alternative is that high-temperature ther-
mal processes occurred after carbonate formation (Shearer et
al. 1999). Thermal decarbonation may result in formation of
magnetite inclusions (Brearley 1998) and could produce isoto-
pic zoning, a possibility explored in this paper.

Oxygen isotope fractionations of >4‰ have been measured

during decarbonation of calcite at high temperatures (McCrea
1950), and in excess of 6‰ for dolomite decarbonated between
500 and 600 ∞C (Sharma and Clayton 1965). Isotopic fraction-
ations of this magnitude, coupled with Rayleigh behavior, could
result in very large isotopic variations on a small scale. To fur-
ther explore the effects of thermal decarbonation at higher pres-
sures and in “real time,” natural carbonate minerals were heated
in a He stream at a pressure 2 bars above atmospheric (3 bars
absolute) until decarbonation temperatures were reached. Con-
tinuous measurements of d13C and d18O values were made on
the evolved CO2 gas. This approach allows for both instanta-
neous and time-integrated isotopic fractionation between car-
bonate and CO2 to be measured. The first is a measure of the
kinetic or equilibrium fractionation between mineral and gas;
the second is a monitor of the mechanism by which gas is re-
leased from the sample, either in a batch mode or Rayleigh-
like fractionation.

METHODS

Starting materials were large single carbonate crystals. Cal-
cite and dolomite came from marbles of the Dora Maira Mas-
sif, Italy. These are high-grade metamorphic carbonates that
lack isotopic zoning and are free of fluid inclusions (Sharp
1992). The siderite sample is a single dark-brown crystal of* E-mail: zsharp@unm.edu
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ABSTRACT

Oxygen and C isotope compositions of CO2 gas released by thermal decomposition of siderite,
calcite, and dolomite were measured using a new “real-time” continuous-flow technique to deter-
mine whether fractionation associated with simple thermal decarbonation could explain the large
isotopic variations and mineralogy such as those found in the ALH84001 meteorite.

Oxygen and C isotope fractionation between calcite or dolomite and evolved CO2 gas during
thermal decarbonation in a 3 bar He pressure environment is very small. The d13C and d18O values
of evolved CO2 gas are nearly identical to those of the carbonate, very different from the calcu-
lated equilibrium D18Ocalcite-CO2 value of –4 to –5‰ at 800–900 ∞C or from previous experimental
results of decarbonation in vacuum. The kinetic D18Osiderite-CO2

 values are ~–2‰, whereas D13Csiderite-CO2

values increase logarithmically with time, from ~1‰ for the earliest stages of decarbonation to >5‰
in the final stages. Incomplete siderite decomposition produces both magnetite (d18O = 3.5‰ SMOW)
and minor graphite. CO and O2 were detected during the decarbonation process. The data can be
explained by simultaneous oxidation and reduction by the reaction:

6FeCO3 Æ 2Fe3O4 + 2x CO + 4y CO2 +(6 – 2x – 4y) C + (5 – x – 4y) O2,

where x and y are between 0 and 1. Siderite decomposition in the presence of H2 gas produces
wüstite and Fe metal in place of oxidized Fe minerals.

The experiments in this study are not a perfect analog for possible decarbonation conditions
that might have occurred to the carbonates in ALH84001. Nevertheless, the large d13C and d18O
variations observed in ALH84001 (>10‰ for O) are significantly larger than those expected by
thermal decarbonation, suggesting instead a low-temperature mechanism for their formation.


