Contribution to the mineralogy of acid drainage of Uranium minerals: Marecottite and the zippeite-group

J. BRUGGER,^{1,2,*} PETER C. BURNS,³ AND N. MEISSER⁴

¹Department of Geology and Geophysics, The University of Adelaide, North Terrace, 5005 Adelaide, South Australia ²Division of Mineralogy, South Australian Museum, North Terrace, 5000 Adelaide, South Australia

³Department of Civil Engineering and Geological Sciences, 156 Fitzpatrick Hall, University of Notre Dame, Notre Dame, Indiana 46556-

0767, U.S.A.

⁴Musée Géologique Cantonal & Laboratoire des Rayons-X, Institut de Minéralogie, UNIL-BFSH2, CH-1015 Lausanne-Dorigny, Switzerland

ABSTRACT

Sulfate-rich acid waters produced by oxidation of sulfide minerals enhance U mobility around U ores and U-bearing radioactive waste. Upon evaporation, several secondary uranyl minerals, including many uranyl sulfates, precipitate from these waters. The zippeite-group of minerals is one of the most common and diverse in such settings. To decipher the nature and crystal chemistry of the zippeite-group, the crystal structure of a new natural hydrated Mg uranyl sulfate related to Mg-zippeite was determined. The mineral is named marecottite after the type locality, the La Creusaz U prospect near Les Marécottes, Western Swiss Alps.

Marecottite is triclinic, $P\overline{1}$, with a = 10.815(4), b = 11.249(4), c = 13.851(6) Å, $\alpha = 66.224(7)$, $\beta = 72.412(7)$, and $\gamma = 69.95(2)^{\circ}$. The ideal structural formula is Mg₃(H₂O)₁₈[(UO₂)₄O₃(OH)(SO₄)₂]₂(H₂O)₁₀. The crystal structure of marecottite contains uranyl sulfate sheets composed of chains of edge-sharing uranyl pentagonal bipyramids that are linked by vertex-sharing with sulfate tetrahedra. The uranyl sulfate sheets are topologically identical to those in zippeite, K(UO₂)₂(SO₄)O₂·2H₂O. The zippeite-type sheets alternate with layers containing isolated Mg(H₂O)₆ octahedra and uncoordinated H₂O groups. The uranyl sulfate and Mg layers are linked by hydrogen bonding only.

Magnesium-zippeite is redefined as $Mg(H_2O)_{3.5}(UO_2)_2(SO_4)O_2$, based on comparison of the powder X-ray diffraction pattern of micro-crystalline co-type material with the pattern of a synthetic phase. Magnesium-zippeite contains zippeite-type uranyl sulfate sheets with Mg located between the layers, where it is in octahedral coordination. In Mg-zippeite, distorted Mg octahedra are linked by sharing vertices, resulting in dimers. The apices of the Mg octahedra correspond to two O atoms of uranyl ions, and four H₂O groups.

Magnesium-zippeite and marecottite co-exist, sometimes in the same sample, at Lucky Strike no. 2 mine, Emery County, Utah (type locality of Mg-zippeite), at Jáchymov, Czech Republic, and at La Creusaz. This study provides insight into the complexity of the zippeite-group minerals containing divalent cations, where different arrangements in the interlayers result in different unit cells and space groups.