Fe$^{3+}[/\Sigma]$Fe vs. Fe$L\alpha$ peak energy for minerals and glasses: Recent advances with the electron microprobe

MICHEL FIALIN,1,* CHRISTIANE WAGNER,2 NICOLE MÉTRICH,3 ERIC HUMLER,4 LAURENCE GALOISY,5 AND ANTOINE BÉZOS4

1Centre de Microanalyse Camparis-CNRS, Université Paris 6, 4 place Jussieu, 75252 Paris cedex 5, France
2Laboratoire de Pétrologie, Modélisation des Matériaux et Processus, Université Paris 6, 4 place Jussieu, 75252 Paris cedex 5, France
3Laboratoire Pierre Süe, UMR 9956-CNRS, CE-Saclay, 91191 Gif sur Yvette, France
4Laboratoire de Géosciences Marines-CNRS, Université Paris 6 et 7, Institut de Physique du Globe, 4 place Jussieu, 75252 Paris cedex 5, France
5Laboratoire de Minéralogie-Cristallographie, UMR 7590-CNRS, Universités Paris 6 et 7, Institut de Physique du Globe, 4 place Jussieu, 75252 Paris cedex 5, France

ABSTRACT

This paper describes a preliminary study that attempts to determine the oxidation state of Fe (Fe$^{3+}$/ΣFe) with the electron microprobe (EMP) by measuring the self-absorption induced shift of the Fe$L\alpha$ peak emitted from minerals and glasses. In transition metals of the first row, the L-spectra exhibit common distortions, namely peak position shifts, peak shape alterations, and changes in the $L\beta/L\alpha$ ratios, caused by the large difference in the self-absorption coefficients (μ/ρ) on either sides of the $L\alpha$ absorption edges that are in close proximity to the $L\alpha$ peak maxima. Measurements performed on α-Fe$_2$O$_3$ and Fe$_3$O$_4$ oxides have shown that self-absorption effects are stronger for the later oxide, leading to enhanced Fe$^{2+}$-$L\alpha$ peak shift toward longer wavelengths as the beam energy increases. First measurements performed on silicates have confirmed that enhanced self-absorption of Fe$^{2+}$ occurs on Fe$^{2+}$ sites. The measurements consisted of plotting the Fe$L\alpha$ peak position at a fixed beam energy (15 keV) against the total Fe concentration for two series of Fe$^{2+}$- and Fe$^{3+}$-bearing silicates. In a first step, these data have shown that both Fe$^{2+}L\alpha$ and Fe$^{3+}L\alpha$ peaks shift continuously toward longer wavelengths as the Fe concentration increases, with enhanced shifts for Fe$^{2+}L\alpha$. For silicates containing only Fe$^{2+}$ or Fe$^{3+}$, no effects of the site geometry were detected on the variations of the Fe$L\alpha$ peak position. A second set of plots has shown the variations of the peak position relative to the previous Fe$^{2+}$-Fe$^{3+}$ curves of step 1, as a function of the nominal Fe$^{3+}$/ΣFe, for a series of reference minerals (hydrated and non-hydrated) and basaltic glasses. Data from chain and sheet silicates (e.g., pyroxenes, amphiboles, micas) exhibited strong deviations compared to other phases (e.g., garnets, Al-rich spinels, glasses), due to reduced self-absorption of Fe$L\alpha$. Intervalance-charge transfer (IVCT) mechanisms between Fe$^{2+}$ and Fe$^{3+}$ sites may be the origin of these deviations. These crystal-structure effects limit the accuracy of the method for mixed Fe$^{2+}$-Fe$^{3+}$ valence silicates. Precisions achieved for further Fe$^{3+}$/ΣFe measurements strongly depend on the total Fe concentration. For basaltic glasses containing an average of 8 wt% Fe and 10% Fe$^{3+}$/ΣFe, the precision is about ±2% (absolute). For low Fe concentrations (below 3.5 wt%), the uncertainty in the peak position measured by the EMP spectrometers leads to error bars that are similar to with the separation of the curves fitted to the Fe$^{2+}$ and Fe$^{3+}$ plots, which is propagated as prohibitive lack of precision for Fe$^{3+}$/ΣFe (>70% relative). A major limitation of microbeam methods in general deals with beam damage. This aspect has been carefully studied for basaltic glasses, and optimal beam conditions have been established (in general, electron doses higher than those corresponding to 130 nA and 30 μm beam diameter should be avoided to prevent large beam induced oxidation phenomena). Additional work, in progress, concerns: (1) other beam-sensitive phases such as hydrated glasses; and (2) minerals in which Fe$L\alpha$ is affected by large matrix effect corrections (e.g., Cr- and Ti-rich oxides where Fe$L\alpha$ is strongly absorbed), for which the self-absorption-induced shift of Fe$L\alpha$ is different from that of common silicates and glasses.

INTRODUCTION

The redox state of Earth’s mantle is a critical parameter to constrain models on the origin and the evolution of the Earth. Oxygen fugacity plays an important role in volatile speciation, physical properties of mantle rocks, core-mantle interactions, and the atmospheric chemistry through time (Kadik and Lukarin 1985; Kasting et al. 1993). The redox state of the upper mantle is commonly estimated through values of oxygen fugacity calculated on the basis of Fe$^{3+}$/Fe$^{2+}$ equilibrium among mineral assemblages such as olivine-orthopyroxene-spinel (Ballhaus et al. 1990; O’Neill et al. 1993) or determined by