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INTRODUCTION

The tremolite-actinolite-ferro-actinolite series (the actino-
lite series, for short) is regulated, when asbestiform, by the
Environmental Protection Agency (U.S. EPA 1987). The regu-
lation applies only to fibers that fit the compositional defini-
tion of the actinolite series (Leake et al. 1997), and that exhibit
optical and crystallographic properties that are not inconsis-
tent with the general knowledge. The actinolite series is ide-
ally ��Ca2(Mg, Fe, Mn)5Si8O22(OH)2, and is subdivided on the
basis of ferro-actinolite content [(Fe + Mn)/(Fe + Mn + Mg)]
into tremolite (0–10% ferro-actinolite), actinolite (10–50%
ferro-actinolite), and ferro-actinolite (50–100% ferro-actino-
lite). Common substitutions in the series can be described by
the charge- and site-balanced exchange components
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(glaucophane). The limits on compositional variability are given
in Leake et al. (1997), and chemical analyses for over 100 natu-
ral samples are available in the literature. Dorling and Zussman
(1987) analyzed a large set of samples in the actinolite series
to compare compositional variability for asbestiform vs. non-
asbestiform samples, and determined that the asbestiform habit
correlates with lower Al contents. There is a suggestion of an

ubiquitous cummingtonite-grunerite component in the actino-
lite series (Evans and Yang 1998). This point was first raised
by analogy with synthetic tremolites, which are very difficult
to synthesize on-composition and tend to have approximately
10% Mg2Mg5Si8O22(OH)2 in solid solution (Jenkins 1987; Gra-
ham et al. 1989; Hawthorne 1995; Jenkins et al. 1997). A re-
view by Jenkins (1987) of 25 published tremolite analyses
concluded that natural tremolite is deficient in Ca with respect
to C-site cations (C = [6]Al, Mg, Fe, Mn, Cr, Ti), although Gra-
ham et al. (1989) pointed to published analyses of tremolite
with ideal Ca/∑C ratios. Synthetic tremolite has an excess of
Mg equivalent to the deficiency in Ca and an otherwise ideal
composition, and therefore the argument of a systematic
cummingtonite solid solution is well grounded. Hawthorne
(1995) questioned the use of Ca/∑C as an indicator of
cummingtonite-grunerite solid solution in natural tremolite
samples, as it is only appropriate when other types of substitu-
tions have been considered and when CMg > 5 atoms per for-
mula unit (apfu).

Tremolite, actinolite, and ferro-actinolite are C2/m
clinoamphiboles, and recent X-ray structural refinements are
found in Yang and Evans (1996) and Evans and Yang (1998).
Yang and Evans (1996) compared a near end-member tremo-
lite to synthetic tremolite, and concluded that an 8–10%
cummingtonite component in tremolite results in a unit-cell
volume decrease from 907.0 Å3 to 904.2 Å3, and a decrease in
β from 104.76° to ~104.55°. Synthetic tremolite has an a di-
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ABSTRACT

Unit-cell parameters, optical properties, and chemical compositions have been measured for 103
samples in the tremolite-actinolite-ferro-actinolite series. The average values of the non-essential
constituents are: TAl = 0.10(11), CAl = 0.06(6), B(Fe, Mn, Mg) = 0.09(7), BNa = 0.04(5), ANa =
0.09(9), and Cr, Ti, and K ≅ 0. Asbestiform actinolite samples have lower Al contents than massive
or “byssolitic” actinolite samples. Unit-cell parameters for end members tremolite and ferro-actino-
lite based on regressions of the data are: a = 9.841 ± 0.003 Å, 10.021 ± 0.011 Å; b = 18.055 ± 0.004
Å, 18.353 ± 0.018 Å; c = 5.278 ± 0.001 Å, 5.315 ± 0.003 Å; and cell volume = 906.6 ± 0.5 Å3, 944
± 2 Å3. The changes in a, b, and cell volume with ferro-actinolite substitution are modeled with
quadratic functions, and the change in c with ferro-actinolite substitution is modeled with a linear
function. There is a positive correlation between c and Al that results in a discrimination between
asbestiform and massive or “byssolitic” habits for c and for the refractive indices. The principal
refractive indices nγ and nβ are linear with respect to ferro-actinolite substitution, but nα is best
modeled by two lines with a change in slope between 26 and 32% ferro-actinolite. Birefringence and
extinction angle also change between 26 and 32% ferro-actinolite. The predicted end-member val-
ues of the principal refractive indices for tremolite and ferro-actinolite are: nα = 1.602 ± 0.001, 1.661
± 0.005; nβ = 1.621 ± 0.001, 1.692 ± 0.004; and nγ = 1.631 ± 0.001, 1.700 ± 0.003. There is a
discontinuity in a at approximately 11% ferro-actinolite that is accompanied by a drop in Ca. There
are also indications of discontinuities in optical properties and c between 26 and 32% ferro-actino-
lite that may be due to an increase in tschermakite substitution. Both discontinuities are accompa-
nied by a decrease in the relative frequency of natural samples.
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