eral (14 lines listed) and a small amount of majorite garnet; strongest lines are at 6.5461(110), 4.6334(200), 2.9314(130), and 2.0315 Å (301). The diffraction pattern corresponds to that of a tetragonal hollandite structure with \(a = 9.263(3)\), \(c = 2.706(3)\), \(D_{\text{calc}} = 3.80\) g/cm\(^3\). Electron microprobe analysis of the material of feldspathic composition gave Na\(2\)O 9.24, K\(2\)O 1.46, CaO 2.20, MgO 0.34, FeO 0.75, Al\(2\)O\(_3\) 21.65, SiO\(_2\) 65.21, sum 99.85 wt%, corresponding to Na\(_{0.73}\)Ca\(_{0.10}\)K\(_{0.08}\)Fe\(_{0.03}\)Mg\(_{0.02}\)Si\(_{2.89}\)Al\(_{1.08}\)O\(_8\). **J.L.J.**

NEW DATA

Masuyite

Single-crystal X-ray structure study (R = 0.063) of masuyite from the Shinkolobwe uranium mine, Shaba Province, Democratic Republic of Congo, gave monoclinic symmetry, space group \(Pn\), \(a = 12.241(3)\), \(b = 7.008(2)\), \(c = 6.983(2)\) Å, \(\beta = 90.402(4)°\), \(D_{\text{calc}} = 6.394\) g/cm\(^3\) for \(Z = 2\). The formula corresponds to that of the Pb analog of protasite, but masuyite has an additional cation site in its structure. **J.L.J.**

Tadzhikite

Tadzhikite occurs abundantly in fractures as optically uniform fibrous aggregates up to 150 µm across. Electron microprobe analyses indicated that the aggregates consist of two intricately intergrown variations, one rich in light REE, and the other rich in Y. If the general formula of tadzhikite is taken as Ca\(_2\)(Ca,Y)\(_2\)(Ti,Fe\(^{3+}\))(REE\(_{\text{II}}\))(B\(_4\)Si\(_4\)O\(_{16}\)(O,OH)\(_6\))(OH)\(_2\) (Am. Mineral., 84, p. 994, 1999), three of the five listed analyses show a large predominance of Ce in the position for REE. For the other two analyses, after filling Ca\(_2\)(Ca,Y)\(_2\), the predominant ion in the REE position is Y. The analyses thus correspond to “tadzhikite-(Ce)” and “tadzhikite-(Y)”, although neither is an approved mineral name.

Discussion: The analyses also show both Ti > Fe\(^{3+}\) and Fe\(^{3+}\) > Ti for “tadzhikite-(Ce)”, and Fe\(^{3+}\) > Ti for “tadzhikite-(Y)”. Moreover, in the structure paper by Hawthorne et al. (Can. Mineral., 36, 817–822, 1998), Y slightly exceeds Ca at the (Ca,Y) site. **J.L.J.**

ERRATA

In the abstract of jamesite (Am. Mineral., 85, p. 266, 2000), the arsenate in the formula should read (AsO\(_4\))\(_2\). For choloalite (Am. Mineral., 85, p. 629, 2000) the formula should read CuPbTe\(^{2+}\)O\(_6\).

Donelick et al. (1999, p. 1230) wrote: “To date, no published studies have been presented that test the model of Laslett et al. (1982),” which is erroneous. Although different approaches were used than those presented in Donelick et al. (1999), the principle of length-biased sampling of fission tracks and the phenomenon of orientation bias were treated in Galbraith et al. (1990). In addition, we neglected to note that the theoretical relation between track length and density was analyzed in Galbraith and Laslett (1988). We failed to cite these two articles, which came to our attention only after our work was reviewed and published. We greatly regret the oversight.

REFERENCES CITED

