American Mineralogist, Volume 84, pages 1562-1568, 1999

Structural investigation of platinum solubility in silicate glasses FRANÇOIS FARGES,^{1,*} DANIEL R. NEUVILLE,² AND GORDON E. BROWN JR.³

¹Laboratoire des géomatériaux, Université de Marne-la-Vallée, 77454 Marne-la-Vallée Cedex 2, France ²Laboratoire de physique des géomatériaux, CNRS and Institut de Physique du Globe de Paris, 4 place Jussieu, 75252 Paris Cedex 05, France ³Department of Geological and Environmental Sciences, Stanford University and Stanford Synchrotron Radiation Laboratory, Stanford, California 94305-2115, U.S.A.

ABSTRACT

The coordination environment of 20-200 ppm Pt in yellowish glasses from the CaO-Al₂O₃-SiO₂ (CAS) ternary was studied using X-ray absorption fine structure spectroscopy at the Pt-L_{III} edge. Analysis of the Pt-L_{III} edge region suggests that Pt in these glasses is mainly tetravalent and sixfold-coordinated by O (with a mean Pt-O distance of 2.08 ± 0.02 Å). No evidence for Pt²⁺ or Pt⁶⁺ was found in any of the glasses studied, suggesting that one can not derive valence information easily from solubility data. No second-neighbor contribution was observed around Pt⁴⁺O₆ polyhedra. However, bond-valence modeling suggest that these polyhedra are likely to bond mostly to ^{IVII}Ca²⁺, which should promote high positional disorder of second-neighbor cations around Pt. This particular bonding arrangement may explain the relatively high solubility of Pt in these relatively depolymerized melts, as CaPtO₃-type units.