American Mineralogist, Volume 84, pages 447-453, 1999

⁵⁷Fe nuclear forward scattering of synchrotron radiation in hedenbergite CaFeSi₂O₆ at hydrostatic pressures up to 68 GPa

L. ZHANG,¹ J. STANEK,² S.S. HAFNER,^{1,*} H. AHSBAHS,¹ H.F. GRÜNSTEUDEL,³ J. METGE,³ AND R. RÜFFER³

¹Scientific Center of Materials Sciences and Institute of Mineralogy, University of Marburg, 35032 Marburg, Germany ²Institute of Physics, Jagiellonian University, 30-059 Cracow, Poland ³European Synchrotron Radiation Facility, 38043 Grenoble Cedex, France

ABSTRACT

The ⁵⁷Fe nuclear forward scattering (NFS) of synchrotron radiation and the use of diamond anvils with helium as pressure medium allowed study of the electronic state of Fe²⁺ in the chain silicate hedenbergite CaFeSi₂O₆ at pressures up to 68 GPa. Characteristics of NFS time spectra were compared with those of conventional Mössbauer spectra.

NFS time spectra of ⁵⁷Fe in hedenbergite revealed a reversible phase transition between 53 and 68 GPa at room temperature, which is probably a transition from the paramagnetic phase at low pressures to a magnetic phase at high pressures. If this interpretation is correct, the Néel temperature $T_{\rm N}$ of hedenbergite depends critically on pressure ($T_{\rm N} = 45$ K at 1 atm).