The high-pressure synthesis of lawsonite in the MORB+H₂O system

KAZUAKI OKAMOTO* AND SHIGENORI MARUYAMA

Department of Earth and Planetary Sciences, Tokyo Institute of Technology, O-okayama 2-12-1, Meguro-Ku, Tokyo 152-8551, Japan

ABSTRACT

Lawsonite is an important water reservoir in subducting oceanic crust below the amphibole dehydration depth \sim 70 km. To determine the maximum pressure stability of lawsonite in the MORB+H₂O system, experiments were carried out using a 1000 ton uniaxial multi-anvil apparatus (SPI-1000). Mixtures of synthetic gel+2wt% H₂O were used for the starting materials with the average MORB composition. Experimental *P-T* conditions were *T* = 700–900 °C and *P* = 5.5–13.5 GPa. Run durations were 12 and 24 h.

Lawsonite was synthesized stably up to 10 GPa and T < 700 °C in the stishovite stability field, and <900 °C at 8 GPa and 750 °C at 5.5 GPa in the coesite stability field, with a steep positive slope for the lawsonite-out reaction. The lawsonite-out reaction in the coesite stability field changes to have a gentle negative slope in the stishovite stability field. The reaction leading to the disappearance of lawsonite is a continuous reaction due to the compositional enlargement of garnet toward the grossular end-member with increasing *T* and *P*. Lawsonite disappears when the tie line connecting grossular-rich garnet with omphacitic clinopyroxene reaches the bulk composition on the conventional AC(FM) ternary diagram.