High-resolution synchrotron X-ray powder diffraction and Rietveld structure refinement of two (Mg_{0.95},Fe_{0.05})SiO₃ perovskite samples synthesized under different oxygen fugacity conditions

A.P. JEPHCOAT,^{1,*} J.A. HRILJAC,² C.A. MCCAMMON,³ H. ST.C. O'NEILL,³ D.C. RUBIE,³ AND L.W. FINGER⁴

¹Department of Earth Sciences, University of Oxford, Parks Road, Oxford, OX1 3PR U.K. ²Department of Applied Science, Chemical Sciences Division, Brookhaven National Laboratory, P.O. Box 5000, Building 815, Upton, Long Island, New York 11973–5000, U.S.A. ³Bayerisches Geoinstitut, Universität Bayreuth, 95440 Bayreuth, Germany ⁴Center for High-Pressure Research and Geophysical Laboratory, 5251 Broad Branch Road, N.W., Washington, D.C. 20015–1305, U.S.A.

ABSTRACT

This paper presents high-resolution synchrotron X-ray powder diffraction data at 290 K on two Fe-bearing, polycrystalline silicate perovskite samples with approximate compositions (Mg_{0.95}Fe_{0.05})SiO₃ synthesized at 25 GPa and 1920 K in a multi-anvil press at different oxygen fugacity conditions. Mössbauer studies have indicated that Fe³⁺/ Σ Fe for the samples are 0.09 ± 0.01 and near 0.16 ± 0.03. Rietveld structural refinements confirm that Fe²⁺ and Fe³⁺ dominantly substitute for Mg²⁺ in the 8-fold to 12-fold coordinated A site for both compositions. There appears to be no significant differences in the bond distances for these amounts of Fe³⁺ and no conclusive structural evidence to support indications from Mössbauer experiments that Fe³⁺ may occupy both A and B sites. To explore the effect of valence state further, this study also reports the first diffraction patterns of (Mg,Fe)SiO₃ perovskite collected at a wavelength near the Fe absorption edge.