Crystal structure of kanemite, NaHSi₂O₅·3H₂O, from the Aris phonolite, Namibia

LAURENCE A.J. GARVIE,^{1,*} BERTRAND DEVOUARD,^{1,†} THOMAS L. GROY,² FERNANDO CÁMARA,^{1,‡} AND PETER R. BUSECK^{1,2}

¹Department of Geology, Arizona State University, Tempe, Arizona 85287-1404, U.S.A. ²Department of Chemistry/Biochemistry, Arizona State University, Tempe, Arizona 85287, U.S.A.

ABSTRACT

Kanemite was studied by single-crystal X-ray diffraction. The mineral, ideally NaHSi₂O₅·3H₂O, is orthorhombic (space group *Pbcn*); unit-cell parameters are a = 4.946(3), b = 20.502(15), c = 7.275(3) Å, with Z = 4. The structure is solved and refined to an *R* value of 0.058 for 825 independent reflections. The arrangement of atoms consists of alternating (010) sheets of corrugated [Si₂O₄OH]ⁿ_n and hydrated Na. The silicate sheets contain six-membered rings of HOSiO₃-SiO₄ units. Sodium atoms coordinate to six water molecules, forming layers of distorted octahedra. Residual electron densities were located that give reasonable positions for four H atoms. One H is part of a silanol group, and the other three H atoms are associated with water bonded to Na. Bonding between the silicate and Na sheets is through hydrogen bonding from H of the Na layer to O of the silicate sheet.