Ultrasonic interferometry and X-ray measurements on MgO in a new diamond anvil cell

H.J. REICHMANN,^{1,*} R.J. ANGEL,¹ H. SPETZLER,² AND W.A. BASSETT³

¹Bayerisches Geoinstitut, Universitaet Bayreuth, D-95440 Bayreuth, Germany
²Department of Geological Sciences and CIRES, University of Colorado, Boulder, Colorado 80309, U.S.A.
³Department of Geological Sciences, Cornell University, Ithaca, New York 14853, U.S.A.

ABSTRACT

The compressional sound wave velocity, v_{p} , of synthetic MgO in the (100) direction and the unitcell parameter have been measured up to a maximum pressure of 6.1 GPa using a new type of diamond-anvil cell. The main feature of the cell is the transverse access of the X-ray beam into the sample chamber. This allows us to undertake single crystal X-ray measurements while the ultrasonic attachment is mounted on the diamond-anvil cell. The sound velocity and the elastic parameter c_{11} have been determined from these measurements; the variation with pressure can be described by $\partial c_{11}/\partial p = 9.35(13)$, in good agreement with previous studies.