Crystal chemistry of Mg-, Fe-bearing muscovites- $2M_1$

MARIA FRANCA BRIGATTI,* PAOLA FRIGIERI, AND LUCIANO POPPI

Dipartimento di Scienze della Terra, Università di Modena, Modena, Italy

ABSTRACT

Phengitic muscovite- $2M_1$ crystals [¹¹²(K_{0.88-0.99}Na_{0.01-0.09}Ca_{0.00-0.06}Ba_{0.00-0.01})^[6](Al_{1.64-1.88}Fe_{0.6-0.29}²⁺Fe_{0.01-0.16}Mg_{0.00-0.07}Ti_{0.00-0.06})^[4](Si_{2.87-3.30}Al_{0.70-1.13})(OH)_{1.56-2.07}F_{0.00-0.41}O_{9.91-10.25}] from pegmatites and peraluminous granites were refined to investigate the influence of phengitic substitution on the mica structure. Single-crystal X-ray diffraction data were collected for eleven crystals in the *C*2/*c* space-group (agreement factor 2.1% $\leq R_{obs} \leq 3.9\%$). Tetrahedral Si and Al cation disorder was found for each sample, with the mean tetrahedral cation-oxygen distances ranging from 1.639 Å $\leq <$ T1-O> ≤ 1.647 Å and 1.640 Å $\leq <$ T2-O> ≤ 1.646 Å. As phengitic substitution increases, the octahedral sheet expands and requires a less distorted (more hexagonal) tetrahedral ring (7.70° $\leq \alpha \leq 11.38°$) and low corrugation of the basal O plane (0.1796 Å $\leq \Delta_Z \leq 0.2296$ Å). The electron density at the M2 site is greater than that required for the ideal muscovite-2*M*₁ structure, and a small excess of electron density is found in the M1 site. The inner sixfold coordination of the interlayer (A) cation is elongated along **c***, which is consistent with the high α values and the long A-O11 bond length.