Chemical reaction between ferropericlase (Mg,Fe)O and water under high pressuretemperature conditions of the deep lower mantle

ZIQIANG YANG¹, HONGSHENG YUAN^{1,†}, LU LIU¹, NICO GIORDANO², YONGJIN CHEN¹, AND LI ZHANG^{1,*}

¹Center for High Pressure Science and Technology Advanced Research, 201203 Shanghai, China ²Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, 22607 Hamburg, Germany

ABSTRACT

The presence of water may contribute to compositional heterogeneities observed in the deep lower mantle. Mg-rich ferropericlase (Fp) (Mg,Fe)O in the rock-salt structure is the second most abundant phase in a pyrolitic lower mantle model. To constrain water storage in the deep lower mantle, experiments on the chemical reaction between (Mg,Fe)O and H₂O were performed in a laser-heated diamond-anvil cell at 95–121 GPa and 2000–2250 K, and the run products were characterized combining in situ synchrotron X-ray diffraction measurements with ex-situ chemical analysis on the recovered samples. The pyrite-structured phase FeO₂H_x ($x \le 1$, Py-phase) containing a negligible amount of Mg (<1 at%) was formed at the expense of iron content in the Fp-phase through the reaction between (Mg,Fe)O and H₂O, thus serving as water storage in the deepest lower mantle. The formation and segregation of nearly Mg-free Py-phase to the base of the lower mantle might provide a new insight into the deep oxygen and hydrogen cycles.

Keywords: Deep lower mantle, chemical reaction, ferropericlase, hydrous phases, hydrogen cycle