A neutron diffraction study of boussingaultite, (NH₄)₂[Mg(H₂O)₆](SO₄)₂

G. Diego Gatta^{1,*}, Giorgio Guastella², Alessandro Guastoni³, Valentina Gagliardi⁴, Laura Cañadillas-Delgado⁵, and Maria Teresa Fernandez-Diaz⁵

¹Dipartimento di Scienze della Terra, Università degli Studi di Milano, Via Botticelli 23, I-20133 Milano, Italy

²Agenzia delle Accise, Dogane e Monopoli, DTI-Lombardia, Ufficio Antifrode-Sezione Laboratori, Via Marco Bruto 14, I-20138 Milano, Italy

³Dipartmento di Geoscienze, Università degli Studi di Padova, Via G. Gradenigo 6, I-35131 Padova, Italy

⁴Istituto Gemmologico Italiano, Piazza San Sepolcro 1, I-20123 Milano, Italy

⁵Institut Laue-Langevin, 71 Avenue des Martyrs, F-38042 Grenoble, France

Abstract

The crystal structure and chemical composition of boussingaultite from Pécs-Vasas, Mecsek Mountains, South Hungary, were investigated by single-crystal neutron diffraction (at 20 K) along with a series of chemical analytical techniques [i.e., gravimetric determination of sulfates, EDTA titrimetric determination of magnesium, ion selective electrode for F and Cl, indirect gravimetric determination of ammonium as (NH₄,Rb,Cs,K) tetraphenylborate, inductively coupled plasma atomic emission spectroscopy for REE and other minor elements, elemental analysis for C, N, and H content, high-T mass loss for H_2O content]. The concentrations of more than 50 elements were measured. The experimental formula of the boussingaultite is: $[(NH_4)_{177}K_{0.27})_{5.199}[(Mg_{0.95}Mn_{0.06})_{5.101}(H_2O)_{5.7}](SO_4)_{1.99}$. Neutron data analysis confirms that the structure of boussingaultite is built up by isolated $Mg(H_2O)_6$ octahedra, along with isolated NH₄- and SO₄-tetrahedra connected by a complex H-bonds network. Mg^{2+} is completely solvated by H₂O molecules in a typical octahedral bonding configuration. All the seven independent oxygen sites in the structure are involved in H-bonds, as donors or as acceptors. The geometry of all the H₂O molecules, bonded to Mg, is in line with that usually observed in crystalline compounds. The H₂O molecules show moderate-strong H-bonds, with H…O_{acceptor} and O_{dono}…O_{acceptor} ranging between 1.72-1.87 and 2.70-2.84 Å, respectively, along with Odonor-H···Oacceptor angles between 168–178°. The four independent N-H···O bonds show H···O_{acceptor} and N_{donor}···O_{acceptor} distances ranging between 1.81–2.00 and 2.84–2.98 Å, respectively, with N-H…O angles between 158–176°. All the H-bonds of the H₂O molecules and of the NH₄-group involve the oxygen sites of the SO₄-group as acceptors: the SO_4 -group is, therefore, the "bridging unit" between the NH₄ and the Mg(H₂O)₆ units, via H-bonds. Our structure refinement proved, unambiguously, that the partial K^+ vs. NH_4^+ replacement generates a local disorder. K lies at the N site, and its bonding configuration can be described by a distorted polyhedron with CN = 8. However, the K⁺ vs. NH_4^+ replacement implies a change in the configuration of the SO₄tetrahedron, through a sort of rotation of the polyhedron. This is the first evidence of the presence of a partial picromerite component in the boussingaultite structure, which gives rise to a local disorder likely due to the significantly different bonding configurations of the two cations. Our refinement also revealed that Mn^{2+} replaces Mg^{2+} at the Mg site. No evidence of distortion of the octahedron is observed in response to such a replacement, but the fraction of Mn^{2+} is modest. An analysis of previous Raman and IR results is provided, and is compared with the experimental results of this study.

Keywords: Boussingaultite, sulfate, neutron diffraction, crystal chemistry, hydrogen bonding