A neutron diffraction study of boussingaultite, $\left(\mathbf{N H}_{4}\right)_{2}\left[\mathbf{M g}\left(\mathbf{H}_{\mathbf{2}} \mathbf{O}\right)_{6}\right]\left(\mathrm{SO}_{4}\right)_{2}$

G. Diego Gatta ${ }^{1, *}$, Giorgio Guastella ${ }^{2}$, Alessandro Guastoni ${ }^{3}$, Valentina Gagliardir ${ }^{4}$, Laura Cañadillas-Delgado ${ }^{5}$, and Maria Teresa Fernandez-Diaz ${ }^{5}$

${ }^{1}$ Dipartimento di Scienze della Terra, Università degli Studi di Milano, Via Botticelli 23, I-20133 Milano, Italy
${ }^{2}$ Agenzia delle Accise, Dogane e Monopoli, DTI-Lombardia, Ufficio Antifrode-Sezione Laboratori, Via Marco Bruto 14, I-20138 Milano, Italy
${ }^{3}$ Dipartmento di Geoscienze, Università degli Studi di Padova, Via G. Gradenigo 6, I-35131 Padova, Italy
${ }^{4}$ Istituto Gemmologico Italiano, Piazza San Sepolcro 1, I-20123 Milano, Italy
${ }^{5}$ Institut Laue-Langevin, 71 Avenue des Martyrs, F-38042 Grenoble, France

Abstract

The crystal structure and chemical composition of boussingaultite from Pécs-Vasas, Mecsek Mountains, South Hungary, were investigated by single-crystal neutron diffraction (at 20 K) along with a series of chemical analytical techniques [i.e., gravimetric determination of sulfates, EDTA titrimetric determination of magnesium, ion selective electrode for F and Cl , indirect gravimetric determination of ammonium as $\left(\mathrm{NH}_{4}, \mathrm{Rb}, \mathrm{Cs}, \mathrm{K}\right)$ tetraphenylborate, inductively coupled plasma atomic emission spectroscopy for REE and other minor elements, elemental analysis for C, N, and H content, high- T mass loss for $\mathrm{H}_{2} \mathrm{O}$ content]. The concentrations of more than 50 elements were measured. The experimental formula of the boussingaultite is: $\left[\left(\mathrm{NH}_{4}\right)_{1.77} \mathrm{~K}_{0.22}\right)_{\Sigma 1.99}\left[\left(\mathrm{Mg}_{0.95} \mathrm{Mn}_{0.06}\right)_{\Sigma 1.01}\left(\mathrm{H}_{2} \mathrm{O}\right)_{5.7}\right]\left(\mathrm{SO}_{4}\right)_{1.99}$. Neutron data analysis confirms that the structure of boussingaultite is built up by isolated $\mathrm{Mg}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}$ octahedra, along with isolated $\mathrm{NH}_{4}-$ and SO_{4}-tetrahedra connected by a complex H -bonds network. Mg^{2+} is completely solvated by $\mathrm{H}_{2} \mathrm{O}$ molecules in a typical octahedral bonding configuration. All the seven independent oxygen sites in the structure are involved in H -bonds, as donors or as acceptors. The geometry of all the $\mathrm{H}_{2} \mathrm{O}$ molecules, bonded to Mg , is in line with that usually observed in crystalline compounds. The $\mathrm{H}_{2} \mathrm{O}$ molecules show moderate-strong H-bonds, with $\mathrm{H} \cdots \mathrm{O}_{\text {acceptor }}$ and $\mathrm{O}_{\text {donor }} \cdots \mathrm{O}_{\text {acceptor }}$ ranging between $1.72-1.87$ and 2.70-2.84 \AA, respectively, along with $\mathrm{O}_{\text {donor }}-\mathrm{H} \cdots \mathrm{O}_{\text {acceptor }}$ angles between $168-178^{\circ}$. The four independent $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ bonds show $\mathrm{H}^{\cdots} \mathrm{O}_{\text {acceptor }}$ and $\mathrm{N}_{\text {donor }} \cdots \mathrm{O}_{\text {acceptor }}$ distances ranging between 1.81-2.00 and 2.84-2.98 \AA, respectively, with $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ angles between $158-176^{\circ}$. All the H -bonds of the $\mathrm{H}_{2} \mathrm{O}$ molecules and of the NH_{4}-group involve the oxygen sites of the SO_{4}-group as acceptors: the SO_{4}-group is, therefore, the "bridging unit" between the NH_{4} and the $\mathrm{Mg}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}$ units, via H -bonds. Our structure refinement proved, unambiguously, that the partial K^{+}vs. NH_{4}^{+}replacement generates a local disorder. K lies at the N site, and its bonding configuration can be described by a distorted polyhedron with $\mathrm{CN}=8$. However, the K^{+}vs. NH_{4}^{+}replacement implies a change in the configuration of the $\mathrm{SO}_{4}{ }^{-}$ tetrahedron, through a sort of rotation of the polyhedron. This is the first evidence of the presence of a partial picromerite component in the boussingaultite structure, which gives rise to a local disorder likely due to the significantly different bonding configurations of the two cations. Our refinement also revealed that Mn^{2+} replaces Mg^{2+} at the Mg site. No evidence of distortion of the octahedron is observed in response to such a replacement, but the fraction of Mn^{2+} is modest. An analysis of previous Raman and IR results is provided, and is compared with the experimental results of this study.

Keywords: Boussingaultite, sulfate, neutron diffraction, crystal chemistry, hydrogen bonding

