In situ Raman vibrational spectra of siderite (FeCO₃) and rhodochrosite (MnCO₃) up to 47 GPa and 1100 K

CHAO WANG^{1,2}, LU'AN REN^{2,3}, JESSE B. WALTERS⁴, LIFEI ZHANG¹, AND RENBIAO TAO^{2,*}

¹School of Earth and Space Sciences, Peking University, Beijing 100871, China ²Center for High Pressure Science and Technology Advanced Research (HPSTAR), Beijing 100094, China ³School of Earth Science and Resources, China University of Geosciences (Beijing), Beijing 100083, China ⁴Institut für Geowissenschaften, Goethe Universität, Frankfurt am Main 60438, Germany

ABSTRACT

Siderite (FeCO₃) and rhodochrosite ($MnCO_3$) are two interesting carbonate minerals, which normally occur in hydrothermal deposits on deep-sea altered oceanic crust. Despite the ubiquity of carbonates in the slab, little is known of the physicochemical behavior of siderite and rhodochrosite at high-pressure (P) and high-temperature (T) conditions during slab subduction. In this study, we characterized the Raman vibrational spectra of natural siderite and rhodochrosite up to 47 GPa and 1100 K in an externally heated diamond-anvil cell (DAC). Experimental results show that the Raman frequency shifts (v_i) for siderite and rhodochrosite are a function of both P and T, and the effect of the P-T cross derivative term cannot be neglected, especially at high-P and high-T conditions. Based on the functional relationship of v_i -P-T, the P-T calibrants of siderite and rhodochrosite are developed, respectively. This is significant for studying the water-carbonate interaction at high P-T conditions in a DAC because the undesired change of the experimental system from traditional pressure sensors (e.g., ruby, quartz) in a reaction chamber can be avoided. Like previous studies, we observed a sharp spin transition at ~45 GPa in siderite and a phase transition from MnCO₃-I to MnCO₃-II at ~46 GPa for rhodochrosite at room temperature. Furthermore, we determined the isobaric and isothermal equivalents of the mode Grüneisen parameter (γ_{iT} , γ_{iP}) and the anharmonic parameter (a_i) for each Raman mode of siderite and rhodochrosite. The $\delta v_i / \delta P$, $\delta v_i / \delta T$, γ_{iT} , γ_{iP} , and a_i span a much larger value range for the external lattice modes (T, L) than internal modes (v_4, v_1) in both siderite and rhodochrosite. Combining Raman frequency shifts and the first-order Murnaghan equation of state, we also developed a method to calculate the temperature dependence of the bulk modulus (K_T) for siderite and rhodochrosite, respectively.

Keywords: Siderite, rhodochrosite, Raman spectroscopy, high-P and high-T, P-T sensor, thermodynamical parameters