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Appendix 1 

Aspect ratio dependence of SEM-CSDs 

CSDCorrections (Higgins 2000) addresses two stereological problems of the conversion 

from 2D to 3D: the cut-section effect and the intersection-probability effect. The stereological 

corrections are applied sequentially from the largest size interval (i.e., the first interval) to smaller 

intervals. The number of crystals per unit volume in the ith interval, nVi, is converted 

stereologically from the number of crystal cross sections per unit area, nAi, as (modified from 

Equations 5 and 8 of Higgins 2000 and Equation 7 of Sahagian and Proussevitch 1998): 

 

  (A1) 

where xi(L) and yi(L) are the lower and upper limits of the ith interval of L, Pji is the probability that 

a crystal with a true (i.e., determined in 3D) size in the jth interval will have a cross-sectional 

length in the ith interval, and CFi is a correction factor representing the proportion of crystals with 

true sizes larger than the ith interval among the cross sections within that interval. –Hi is the Mean 

Projected Height defined by Tuffen (1998) and the Equation 8 of Higgins (2000). Regarding the 
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Equation (A1), the first term, nAi, is obtained by dividing the number of crystal cross sections by the 

area analyzed. The second and third terms are correction terms for the effects of sectioning and 

the probability of intersection, respectively. Note that the interval width as a function of L is 

calculated from Equation (1). More specifically, in the case of conversion from w, the interval 

width is: 

  (A2a) 

and in the case of conversion from l, it is: 

 . (A2b) 

The population density in the ith interval, Ni, is obtained by dividing nVi (cf. Equation A1) by the 

interval width (Equation 10 of Higgins 2000). Consequently, CSDCorrections calculates the L-plot 

population density as: 

   

  (A3a) 

or 
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 . (A3b) 

To obtain S-plot and I-plot CSDs, we converted the L-plot population densities output by 

CSDCorrections, Ni(L), as: 

  (A4a) 

 . (A4b) 

Substituting Equation (A3) into Equation (A4) gives: 

  (A5a) 

 . (A5b) 

The third terms of Equations (A3) and (A5) are independent from the 3D aspect ratio 

used for the 2D–3D conversion. As shown by the first right-hand terms of the equations, Ni(L) 

depends more strongly on the aspect ratio than do Ni(S) and Ni(I). In addition to the aspect ratio 

dependence of the population densities, the L-plot SEM-CSDs require an additional correction in 

which their horizontal axes are enlarged by A or B times. This procedure softens the slopes of L-

plot CSDs by A or B times those in S- or I-plot CSDs, respectively. Therefore, L-plot CSDs are more 

strongly changed by the aspect ratio (A or B) than are S- and I-plot CSDs (Fig. S1). 
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Appendix 2 

Simulation of CSDs based on Marsh (1998) 

Marsh (1998) formulated CSDs in the non-steady closed systems by employing the 

Johnson-Mehl-Avrami equation for crystallinity related to time-variant nucleation and growth 

rates. Considering the exponential variations in time of nucleation (J) and growth (G) rates, their 

functions are 

  (A6) 

  (A7) 

where a and b are constants, and x is the dimensionless time (0–1). The dimensionless time x is 

normalized by the crystallization duration, t (i.e., x = t/t). The subscript o for the parameters 

indicates the initial values (i.e., at time x = 0). The final size (i.e., at x = 1) of a crystal which 

nucleated at a certain time x, R(x), is expressed as follows (cf. Equation 5 in Marsh 1998). 

  (A8) 

The natural logarithm of population density of crystals which nucleated at the certain time x, Ln 

N(x), is expressed as (modified from Equations 3, 12, and 26 in Marsh 1998): 
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  (A9) 

where the function f (x, a, b) is defined as the Equation 10 in Marsh (1998): 

 . (A10) 

From the Equations (A8) and (A9), we obtain the simulated CSDs for specified kinetic conditions (a, 

b, Jo, Go, and t) by plotting Ln N(x) against R(x) for x = [0, 1]. To investigate the effect of increasing 

growth rate on CSDs under different ascent paths, we simulated four sets of conditions as shown 

in Table S1. The ranges of the kinetic parameters (Figs 2c and 2d) are realistic (cf. Marsh 1998; 

Shea and Hammer 2013). 

Appendix 3 

SEM-CSDs converted using XCT average aspect ratios 

For the stereological conversions, we used two distinct 3D aspect ratios to assess the 

effect of the estimation error on the CSD shapes: the value estimated from the 2D data by CSDslice 

(Morgan and Jerram 2006) and the average value determined by SR-XCT (Table 4). Here, we refer 

to the SEM-CSDs converted from the datasets of w and l and corrected with the ratio estimated 

from the 2D data as SEM(w-2D)-CSDs and SEM(l-2D)-CSDs, respectively, and those corrected with 
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the average ratio from the SR-XCT data as SEM(w-3D)-CSDs and SEM(l-3D)-CSDs, respectively. In 

addition to the seven types of CSDs presented in the main text, we thus obtained 11 types of CSDs. 

Figure S2 compares CT-CSDs, SEM(2D)-CSDs, and SEM(3D)-CSDs. We observed obvious 

discrepancies between the SEM(2D)-CSDs and the SEM(3D)-CSDs for the sub-Plinian pumice that 

resulted from the 3D aspect ratio used. The S- and I-plot SEM-CSDs are vertically displaced but 

have similar shapes, and the SEM(3D)-CSDs were closer to (i.e., less vertically displaced from) the 

CT-CSDs (Figs. S2a and S2b; Table 4). Although the SEM(3D)-CSDs were almost consistent with the 

L-plot CT-CSD, the SEM(2D)-CSDs were considerably distorted (Fig. S2c). In the Vulcanian L plot 

(Fig. S2f), the slopes of the SEM(w)-CSDs differed slightly from that of the CT-CSD, irrespective of 

the 3D aspect ratio used, whereas the SEM(l)-CSDs were similar to the CT-CSD. This discrepancy 

may reflect the non-equivalence between the w and l datasets (Higgins 1994; Muir et al. 2012) or 

may indicate that both of the L/S ratios (A) differed from an appropriate value, which is possibly 

associated with the large variation in the ratios (Castro et al. 2003). 

Comparing the sub-Plinian and Vulcanian pumice samples, the SEM(3D)-CSDs were 

similar in the L plot (Fig. S3f), but different in the S and I plots, especially in the size range of 

nanolites (Figs. S3d and S3e). Consequently, the SEM(3D)-CSDs more clearly reflected the 
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difference in magma ascent conditions in the S and I plots than in the L plot (Table 4), consistent 

with the CT-CSDs (Fig. 8). 
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