The new mineral tomiolloite, Al₁₂(Te⁴⁺O₃)₅[(SO₃)_{0.5}(SO₄)_{0.5}](OH)₂₄: A unique microporous tellurite structure

Owen P. Missen^{1,2,*,‡}, Stuart J. Mills¹, Michael S. Rumsey³, John Spratt⁴, Jens Najorka⁴, Anthony R. Kampf^{5,†}, and Brent Thorne⁶

¹Geosciences, Museums Victoria, GPO Box 666, Melbourne 3001, Victoria, Australia

²School of Earth, Atmosphere and Environment, Monash University, Clayton 3800, Victoria, Australia

³Department of Earth Sciences, Natural History Museum, Cromwell Road, London SW7 5BD, U.K.

⁴Department of Core Research Laboratories, Natural History Museum, Cromwell Road, London SW7 5BD, U.K.

⁵Mineral Sciences Department, Natural History Museum of Los Angeles County, 900 Exposition Boulevard, Los Angeles, California 90007, U.S.A. ⁶3898 Newport Circle, Bountiful, Utah 84010, U.S.A.

ABSTRACT

Tomiolloite (IMA2021-019) is a new aluminum tellurite sulfite-sulfate mineral discovered at the Bambolla mine, Moctezuma, Sonora, Mexico, a well-known tellurium (Te) mineral locality. Tomiolloite forms roughly spherical clusters of crystals comprised of very thin, needle-like crystals (1 µm diameter, ~40 µm length) around a core of small, stubbier, broken crystals. Tomiolloite is generally found growing on tellurite or quartz. The strongest powder X-ray diffraction lines are $[d_{obs} \text{ Å } (I_{obs}) (hkl)]$: 11.667 (89) (100), 8.240 (38) (101), 4.107 (29) (202,211,121), 3.223 (100) (203,302,130), and 2.905 (37) (213,123,222,400). The empirical formula of tomiolloite, as determined by electron microprobe analysis, is $(Al_{10.64}Te_{10.74}^{6+}Te_{0.31}^{6+}Zn_{0.04})_{\Sigma_{10}}(Te_{5.00}^{4+}Pb_{0.02})_{\Sigma_{5.02}}(S_{0.49}^{4+}S_{0.49}^{6+}Si_{0.02})_{\Sigma_{1.00}}O_{21.53}[(OH)_{20.86}Cl_{0.11}]_{\Sigma_{20.97}}$, which is simplified to the ideal formula $Al_{12}(Te^{4+}O_3)_5[(SO_3)_{0.5}(SO_4)_{0.5}](OH)_{24}$. Significant Te^{6+} substitution for Al3+ is observed in tomiolloite, verified by X-ray photoelectron spectroscopy and crystal-structure analysis. The structure of tomiolloite was determined using synchrotron single-crystal X-ray diffraction, showing that tomiolloite is hexagonal and crystallizes in the space-group $P6_3/m$, with the unit-cell parameters a = 13.3360(19) Å, c = 11.604(2) Å, V = 1787.3(6) Å³, and Z = 2. Tomiolloite has a unique microporous framework structure, which bears a slight similarity to that of zemannite, but it has a much larger cavity diameter (8.85 Å). The framework is built from edge-sharing $M\phi_6$ octahedra (M =Al³⁺ and Te⁶⁺), Te⁴⁺O₃ trigonal pyramids, and Te⁴⁺O₄ disphenoids. $M\phi_6$ octahedra edge-share to form crankshaft-shaped chains along c, with $Te^{4+}O_n$ polyhedra filling notches in the crankshafts and providing linkages between adjacent chains. The framework has an overall positive charge, which is balanced by the presence of both sulfite (SO_3^2) trigonal pyramids and sulfate (SO_4^2) tetrahedra in the channels.

Keywords: New mineral, crystal structure, tellurium oxysalt, microporous, synchrotron radiation, X-ray diffraction, Moctezuma, Sonora, Mexico; Microporous materials: crystal-chemistry, properties, and utilizations