Zinconigerite-2N1S ZnSn₂Al₁₂O₂₂(OH)₂ and zinconigerite-6N6S Zn₃Sn₂Al₁₆O₃₀(OH)₂, two new minerals of the nolanite-spinel polysomatic series from the Xianghualing skarn, Hunan Province, China

CAN RAO^{1,*}, XIANGPING GU², RUCHENG WANG³, QUNKE XIA^{1,†}, CHUANWAN DONG¹, Frédéric Hatert⁴, Fabrice Dal Bo⁵, Xuege Yu¹, and Wumengyu Wang¹

¹Key Laboratory of Geoscience Big Data and Deep Resource of Zhejiang Province, School of Earth Sciences, Zhejiang University, Hangzhou 310027, China

²School of Earth Sciences and Info-physics, Central South University, Changsha, 410083, China

³State Key Laboratory for Mineral Deposits Research, School of Earth Sciences and Engineering, Nanjing University, Nanjing, 210046, China

⁴Laboratoire de Minéralogie, B18, Université de Liège, B-4000 Liège, Belgium

⁵Natural History Museum, University of Oslo, PO 1172 Blindern, 0318 Oslo, Norway

ABSTRACT

Zinconigerite-2N1S ZnSn₂Al₁₂O₂₂(OH)₂ and zinconigerite-6N6S Zn₃Sn₂Al₁₆O₃₀(OH)₂ are two new minerals with different numbers and ratios of nolanite (N) and spinel (S) modules. Both phases have been discovered in the Xianghualing skarn, Hunan Province, China. Zinconigerite-2N1S (zn-2N1S) and zinconigerite-6N6S (zn-6N6S) are named for their chemical composition, number, and ratios of N-S modules, according to the nomenclature of the nolanite-spinel polysomatic series of Armbruster (2002). Both phases occur as aggregates, sub-to-euhedral crystals, with maximal dimensions up to 100 µm, within fluorite aggregates, and they are closely associated with phlogopite, chrysoberyl, magnetite, cassiterite, margarite, and nigerite-taaffeite group minerals. They do not show fluorescence in long- or short-wave ultraviolet light. The calculated densities are 4.456 g/cm^3 for zn-2N1S and 4.438g/cm³ for zn-6N6S. Optically, zn-2N1S is uniaxial (+) with $\omega = 1.83(1)$, $\varepsilon = 1.84(2)$; zn-6N6S is uniaxial (+) with $\omega = 1.85(1)$, $\varepsilon = 1.87(2)$ ($\lambda = 589$ nm). Their chemical compositions by electron-microprobe analyses give the empirical formulas $(Zn_{0.734}Mn_{0.204}Na_{0.122}Ca_{0.063}Mg_{0.044})_{\Sigma1,166}(Sn_{1.941}Zn_{0.053}Ti_{0.007})_{\Sigma2}$ $(Al_{11.018}Fe_{0.690}^{3+}Zn_{0.200}Si_{0.092})_{12}O_{22}(OH)_2 \text{ for } zn-2N1S \text{ and } (Zn_{1.689}Mn_{0.576}Mg_{0.328}Fe_{0.407}^{3+})_{\Sigma3}(Sn_{1.882}Zn_{0.047})_{\Sigma3}(Sn_{1.882$ $Ti_{0.071}$ $\Sigma_{2}(Al_{14.675}Fe_{1.88}^{+}Na_{0.13}Ca_{0.086}Si_{0.017})$ $\Sigma_{15.996}O_{30}(OH)_{2}$ for zn-6N6S. Both phases have trigonal symmetry; the unit-cell parameters of $zn-2N1S(P\overline{3}m1)$ and $zn-6N6S(R\overline{3}m)$, refined from single-crystal X-ray diffraction data, are, a = 5.7191(2) and 5.7241(2) Å, c = 13.8380(6) and 55.5393(16) Å, V = 391.98(3)and 1575.96(12) Å³, and Z = 1 and 3, respectively. The structure of zn-2*N*1S is characterized by the alternating $O-T_1-O-T_2-O-T_1$ layers stacked along the *c*-axis, showing the connectivity of *N-S-N*. The polyhedral stacking sequence of zn-6N6S is $3 \times (O-T_1-O-T_2-O-T_2-O-T_1)$, reflecting a N-S-S-N-N-S-S-N-N-S-S-N connectivity of the polysomatic structure. By contrast, the structure of zn-2N1S shows the elemental replacements of Al \rightarrow Sn and Al \rightarrow Zn, suggesting the substitution mechanism of 2Al \rightarrow Zn + Sn. The complex substitution of Zn by multiple elements (Al, Fe³⁺, Mn, Mg) in the structure of zn-6N6S, is coupled with the low occupancy of Al5-octahedra. Fe³⁺ \rightarrow Al substitution occurs in All-tetrahedra of both zn-2N1S and zn-6N6S. The new polysomes, zn-2N1S and zn-6N6S, likely crystallized under F-rich conditions during the late stages of the Xianghualing skarn formation. The discovery of zn-2N1S and zn-6N6S provides new insights into the crystal chemistry of the N-S polysomatic series and its origin.

Keywords: Zinconigerite-2*N*1*S*, zinconigerite-6*N*6*S*, nolanite module, spinel module, polysomatic series, Xianghualing skarn