Natural cubic perovskite, Ca(Ti,Si,Cr)O$_{3-\delta}$, a versatile potential host for rock-forming and less-common elements up to Earth’s mantle pressure

SERGEY N. BRITVIN1,2,*, NATALIA S. VLASENKO1, ANDREY ASLANDUKOV3, ALENA ASLANDUKOVA4, LEONID DUBROVINSKY5, LIUDMILA A. GORELOVA1, MARIA G. KRZHIZHANOVSKAYA1, OLEG S. VERESHCHAGIN1†, VLADIMIR N. BOCHAROV1, YULIA S. SHELUKHINA1, MAKSIM S. LOZHKIN1, ANATOLY N. ZAITSEV1, AND FABRIZIO NESTOLA6‡

1Saint-Petersburg State University, Universitetskaya Nab. 7/9, 199034 St. Petersburg, Russia
2Kola Science Center of Russian Academy of Sciences, Fersman Str. 14, 184209 Apatity, Russia
3Material Physics and Technology at Extreme Conditions, Laboratory of Crystallography, University of Bayreuth, 95440 Bayreuth, Germany
4Bayerisches Geoinstitut, University of Bayreuth, Universitätsstraße 30, 95447 Bayreuth, Germany
5Bavarian Research Institute of Experimental Geochemistry and Geophysics, University of Bayreuth, 95440 Bayreuth, Germany
6Dipartimento di Geoscienze, Università degli Studi di Padova, Via G. Gradenigo 6, I-35131 Padova, 21 Italy

ABSTRACT

Perovskite, CaTiO$_3$, originally described as a cubic mineral, is known to have a distorted (orthorhombic) crystal structure. We herein report on the discovery of natural cubic perovskite. This was identified in gehlenite-bearing rocks occurring in a pyrometamorphic complex of the Hatrurim Formation (the Mottled Zone), in the vicinity of the Dead Sea, Negev Desert, Israel. The mineral is associated with native α-(Fe,Ni) metal, schreibersite (Fe,P), and Si-rich fluorapatite. The crystals of this perovskite reach 50 μm in size and contain many micrometer-sized inclusions of melilitic glass. The mineral contains significant amounts of Si substituting for Ti (up to 9.6 wt% SiO$_2$), corresponding to 21 mol% of the davemaoite component (cubic perovskite-type CaSiO$_3$), in addition to up to 6.6 wt% Cr$_2$O$_3$. Incorporation of trivalent elements results in the occurrence of oxygen vacancies in the crystal structure; this is the first example of natural oxygen-vacant ABO$_3$ perovskite with the chemical formula Ca(Ti,Si,Cr)O$_{3-\delta}$ ($\delta \approx 0.1$). Stabilization of cubic symmetry (space group $Pm\overline{3}m$) is achieved via the mechanism not reported so far for CaTiO$_3$, namely displacement of an O atom from its ideal structural position (site splitting). The mineral is stable at atmospheric pressure to 1250 ± 50 °C; above this temperature, its crystals fuse with the embedded melilitic glass, yielding a mixture of titanite and anorthite upon melt solidification. The mineral is stable upon compression to at least 50 GPa. The a lattice parameter exhibits continuous contraction from 3.808(1) Å at atmospheric pressure to 3.551(6) Å at 50 GPa. The second-order truncation of the Birch-Murnaghan equation of state gives the initial volume V_0 equal to 55.5(2) Å3 and room temperature isothermal bulk modulus K_0 of 153(11) GPa. The discovery of oxygen-deficient single perovskite suggests previously unaccounted ways for incorporation of almost any element into the perovskite framework up to pressures corresponding to those of the Earth’s mantle.

Keywords: Cubic perovskite, site splitting, disordered oxygen vacancies, dawemaoite, mantle, high pressure, pyrometamorphism, Dead Sea Transform

INTRODUCTION

The perovskite structure is an aristotype for a diversity of minerals and advanced materials (Mitchell 2002; Mitchell et al. 2017). Perovskite-structured silicates, bridgmanite (MgSiO$_3$), and dawemaoite (CaSiO$_3$) are considered the major phases constituting the Earth’s mantle (Tschauer et al. 2014, 2020; Nestola et al. 2018). Archetypal perovskite, originally described as cubic CaTiO$_3$ (Rose 1839), has a distorted, orthorhombic framework that is determined by its composition and Goldschmidt’s tolerance factor (Barth 1925; Goldschmidt 1926). Synthetic CaTiO$_3$ undergoes consecutive phase transitions to tetragonal and then to cubic modifications above 1100 °C (Redfern 1996; Ali and Yashima 2005). These transformations are reversible and non-quenchable, thus, CaTiO$_3$ returns to an orthorhombic form upon cooling to room temperature. It was demonstrated in synthetic systems that substitution of Ti by Fe$^{3+}$ results in obtaining quenched cubic perovskite (Becerro et al. 1999; McCammon et al. 2000). However, natural perovskite is practically devoid of Fe. The high-pressure behavior of synthetic CaTiO$_3$ was studied in detail as a predictive model for the evolution of silicate perovskites under conditions of the Earth’s mantle (Ross and Angel 1999; Guennou et al. 2010). It was found that orthorhombic CaTiO$_3$ does not undergo phase transitions up to 60 GPa. Therefore, cubic perovskite was not considered as a phase that can exist in nature.

In the course of ongoing research of phosphide assemblages occurring in the pyrometamorphic rocks of the Hatrurim Forma-