Spectroscopic study on the local structure of sulfate (SO$_4^{2-}$) incorporated in scorodite (FeAsO$_4$·2H$_2$O) lattice: Implications for understanding the Fe(III)-As(V)-SO$_4^{2-}$-bearing minerals formation

XU MA1†, FENGDAI QI1, MARIO ALBERTO GOMEZ3, RUI SU2, ZELONG YAN1, SHUHUA YAO3, SHAOFENG WANG2*, and YONGFENG JIA2

1Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
2Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China
3Liaoning Engineering Research Center for Treatment and Recycling of Industrially Discharged Heavy Metals, Shenyang University of Chemical Technology, Shenyang 110142, China

ABSTRACT

The incorporation of sulfate (SO$_4^{2-}$) into the scorodite (FeAsO$_4$·2H$_2$O) lattice is an important mechanism during arsenic (As) fixation in natural and engineered settings. However, spectroscopic evidence of SO$_4^{2-}$ speciation and local structure in scorodite lattice is still lacking. In this study, X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), sulfur K-edge X-ray absorption near edge structure (XANES), and extended X-ray absorption fine structure (EXAFS) spectroscopic analyses in combination with density functional theory (DFT) calculations were used to determine the local coordination environment of SO$_4^{2-}$ in the naturally and hydrothermally synthesized scorodite. The SO$_4^{2-}$ retention in natural scorodite and the effect of pH value and initial Na$^+$ concentration on the incorporation of SO$_4^{2-}$ in synthetic scorodite were investigated. The results showed that trace amounts of SO$_4^{2-}$ were incorporated in natural scorodite samples. Scanning electron microscopy (SEM) results revealed that SO$_4^{2-}$ was homogeneously distributed inside the natural and synthetic scorodite particles, and its content in the synthetic scorodite increased slightly with the initial Na$^+$ concentration at pH of 1.2 and 1.8. The FTIR features and XANES results indicated that the coordination number (CN) of FeO$_6$ octahedra around SO$_4^{2-}$ in scorodite lattice is four. The DFT calculation optimized interatomic distances of S-O were 1.45, 1.46, 1.48, and 1.48 Å with an average of ~1.47 Å, and the interatomic distances of S-Fe were 3.29, 3.29, 3.33, and 3.41 Å with an average of ~3.33 Å. EXAFS analysis gave an average S-O bond length of 1.47(1) and S-Fe bond length of 3.33(1) Å with a CN$_{SO_4}$ = 4 for SO$_4^{2-}$ in the scorodite structure, in good agreement with the DFT optimized structure. The results conclusively showed that SO$_4^{2-}$ in the scorodite lattice may be in the form of a Fe$_2$(SO$_4$)$_3$-like local structure. The present study is significant for understanding the formation mechanism of scorodite in natural environments and hydrometallurgical unit operations for waste sulfuric acid treatment.

Keywords: Arsenic, scorodite, sulfate, incorporation, local environment

INTRODUCTION

Crystalline ferric arsenate (scorodite, FeAsO$_4$·2H$_2$O) is one of the least soluble As phases and a pivotal secondary As-bearing mineral controlling the fate and transport of As in acidic Fe(III)-As(V)-SO$_4^{2-}$-H$_2$O systems, such as arsenic-contaminated soil, hydrometallurgical tailings, and acid mine drainage (AMD) (Giere et al. 2003; Drahota and Filippi 2009; Murciego et al. 2011). Several studies have found that arsenopyrite (FeAsS) and arsenical-pyrite (As-FeS$_2$) solid wastes in abandoned mine tailings were enveloped by secondary scorodite and amorphous ferric arsenate under natural weathering conditions (Flemming et al. 2005; Langmuir et al. 2006; Paktunc and Bruggeman 2010). Furthermore, scorodite precipitation is a sink for As in metallurgical processing due to its high-As content (~32 wt%), low solubility, and good-settling properties (Debekauessen et al. 2001; Fujita et al. 2008b, 2008c, 2009b; Le Berre et al. 2008; Ma et al. 2019; Zhu et al. 2019).

It is well known that scorodite can be formed in natural and industrial settings, where the dissolved Fe and As appear simultaneously with sulfate (SO$_4^{2-}$). For example, the weathering of arsenide or sulfide minerals in natural settings (i.e., AMD) and the utilization of Fe$_2$(SO$_4$)$_3$ or FeSO$_4$ as an iron source for the conversion of arsenic into scorodite in metallurgical plant effluents (Giere et al. 2003; Drahota and Filippi 2009; Murciego et al. 2011). It has been reported that dissolved SO$_4^{2-}$ concentrations in such natural settings and industrial systems are a few orders of magnitude higher than those of toxic elements (e.g., As, Cu$^{2+}$, Zn$^{2+}$, Pb$^{2+}$, and Cd$^{2+}$) at a wide pH range (~3.6 to circumneutral) (Nordstrom et al. 2000; López-Archilla et al. 2001; Casiot et al. 2003; Morin et al. 2003; Maillot et al. 2013). Due to the similar geometry and charge between HAsO$_4^{2-}$ and SO$_4^{2-}$, HAsO$_4^{2-}$ can be incorporated into SO$_4^{2-}$-bearing minerals via the isomorphic substitution for SO$_4^{2-}$ forming solid solutions. For example,