Uranotungstite, the only natural uranyl tungstate: Crystal structure revealed from 3D electron diffraction

Gwladys Steciuk¹, Uwe Kolitsch^{2,3}, Viktor Goliáš⁴, Radek Škoda⁵, Jakub Plášil^{1,*}, and Franz Xaver Schmidt⁶

¹Institute of Physics ASCR, v.v.i., Na Slovance 1999/2, 18221 Prague 8, Czech Republic

²Mineralogisch-Petrographische Abt., Naturhistorisches Museum, Burgring 7, 1010 Wien, Austria

³Institut für Mineralogie und Kristallographie, Universität Wien, Josef-Holaubek-Platz 2, 1090 Wien, Austria

⁴Institute of Geochemistry, Mineralogy and Mineral Resources, Faculty of Science, Charles University in Prague, Albertov 6, 128 43,

Prague 2, Czech Republic

⁵Department of Geological Sciences, Faculty of Science, Masaryk University, Kotlářská 2, 611 37, Brno, Czech Republic ⁶Staatliches Museum für Naturkunde Stuttgart, Rosenstein 1, 70191 Stuttgart, Germany

ABSTRACT

Uranotungstite is an uranyl-tungstate mineral that was until recently only partially characterized with a formula originally given as (Fe²⁺,Ba,Pb)(UO₂)₂(WO₄)(OH)₄·12H₂O and an unknown crystal structure. This mineral has been reinvestigated by electron microprobe analysis coupled with threedimensional electron diffraction. According to the electron microprobe data, the holotype material from the Menzenschwand uranium deposit (Black Forest, Germany) has the empirical formula $(Ba_{0.35}Pb_{0.27})_{\Sigma_{0.62}}[(U^{6+}O_2)_2(W_{0.98}^{6+}Fe_{0.26}^{3+}D_{0.75})O_{4.7}(OH)_{2.5}(H_2O)_{1.75}](H_2O)_{1.67}$ (average of 8 points calculated on the basis of 2U apfu; H₂O content derived from the structure). According to the precession-assisted 3D ED data, holotype uranotungstite from Menzenschwand is monoclinic, $P2_1/m$, with a = 6.318(5) Å, b = 7.388(9) Å, c = 13.71(4) Å, $\beta = 99.04(13)^{\circ}$, and V = 632(2) Å³ (Z = 2). The structure refinement of the 3D ED data using the dynamical approach ($R_{obs} = 0.0846$ for 3287 independent observed reflections) provided a structure model composed of heteropolyhedral sheets. A β-U₃O₈-type sheet of idealized composition $[(UO_2)_2W^{6+}Fe_{0.25}^{3+}\Box_{0.75}O_{4.75}(OH)_{1.5}(H_2O)_{1.75}]^{0.25-}$ is composed of UO₇ polyhedra linked by (W.Fe)O₅ polyhedra in which the W:Fe ratio is variable as well as the bulk occupancy of this site; the W site may also host a minor proportion of Cu, Mg, or V. In uranotungstite, the interlayer spaces between adjacent U-W-O sheets host water on one side and, on the other side, a partially occupied cation site mostly occupied by Ba and, to a lesser extent, Pb, as well as a partially occupied H₂O site. This work is the first structural description of a natural uranyl-tungstate mineral and confirms the great structural and chemical flexibility of β -U₃O₈ type of sheets.

Keywords: Uranotungstite, uranyl tungstate, crystal structure, crystal chemistry, Menzenschwand, 3D electron diffraction