
Document S2 (Pseudosection modeling) 

Supplementary material for: 
Various antiphase domains in garnet-hosted omphacite in low temperature eclogite: A FIB–TEM 
study on heterogeneous ordering processes 

Ryo Fukushima1, Tatsuki Tsujimori1,2, Nobuyoshi Miyajima3 

1 Graduate School of Science, Tohoku University, Sendai 980-8578, Japan 
2 Center for Northeast Asian Studies, Tohoku University, Sendai 980-8576, Japan 
3 Bayerisches Geoinstitut, Universität Bayreuth, 95440 Bayreuth, Germany 

Corresponding author: Ryo Fukushima 
E-mail address: ryo.fukushima.p7@dc.tohoku.ac.jp
Address: Graduate School of Science, Tohoku University, 41 Kawauchi, Aoba, Sendai 980-8578,
Japan
Phone/Fax: +81-22-795-6236

Journal: American Mineralogist 

American Mineralogist: October 2021 Online Materials AM-21-107784



Pseudosection modeling 
In order to confirm omphacite can be formed simultaneously with growth of the garnet (core: 
prp5alm67sps3grs24, rim: prp8alm61sps2grs30), we simulated it with pseudosection modeling by 
considering a prograde metamorphic path and fractional crystallization of the garnet. For simplicity, we 
neglected thermal overstepping of garnet nucleation. We used the software Theriak-Domino (de 
Capitani and Brown 1987; de Capitani and Petrakakis 2010) and thermodynamic data of Holland and 
Powell (1998). Mixing models are shown in Table S2. The whole rock composition of Syros eclogite 
was obtained by calculating an average of some eclogite compositions in Laurent et al. (2018) (Table 
S3). We chose a water-saturated MnNCKFMASHO + Ti + CO2 system. An activity of CO2 was fixed 
to 0.03 (Schumacher et al. 2008). 

First of all, assuming that the garnet grew earliest in the eclogite, we started with estimating the 
P–T condition under which the garnet core was thermodynamically stable. We found that the P–T 
condition under which the garnet core had nucleated was at (~500℃, 2.0 GPa). Then an imaginary P–T 
path from (~500℃, 2.0 GPa) to (~530℃, 2.2 GPa) was set to define the garnet-fractionated bulk 
composition. Finally, we obtained the final condition at (~550℃, 2.5 GPa). It should be noted that the 
final condition is calculated without CO2 so that we can obtain a reasonable value of pressure there. 
The estimated P–T path is similar to the P–T paths of Trotet et al. (2001) and Laurent et al. (2018). 

We then calculated changes in amount of pyroxene and its end-members as garnet grew (Figs. 
S2 and S3). Our estimation shows that the amount of pyroxene approximately increases and the 
hedenbergite concentration decreases during the rim growth. 
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Table S2. Mixing models used in the pseudosection modeling. 

Phase Model 
Garnet: [Mg, Fe, Ca, Mn]3Al2Si3O8
(End-members: pyrope, almandine, grossular and spessartine) 

Na-pyroxene: [Ca, Na][Mg, Fe, Al]Si2O6
(End-members: diopside, hedenbergite, jadeite and omphacite) 

Epidote: Ca2Al2[Al, Fe3+]Si3O12(OH) 
(End-members: clinozoisite and epidote) 

Chlorite: [Mg, Fe, Mn]4[Mg, Fe, Al, Mn]2[Si, Al]2Si2O10(OH)8
(End-members: Al-free chlorite, clinochlore, daphnite, amesite 
and Mn-chlorite) 

White mica: [K, Na][Mg, Fe, Al][Al][Si, Al]2Si2O10(OH)2 
(End-members: muscovite, celadonite, Fe-celadonite and 
paragonite) 

Carbonate: [Ca, Mg]CO3
(End-members: calcite, dolomite and magnesite) 

Amphibole: [Na, Ca]2[Mg, Fe, Al]2[Mg, Fe]3Si8O22(OH)2 
(End-members: glaucophane, ferroglaucophane, tschermakite, Fe-
tschermakite, tremolite, ferroactinolite) 

Feldspar: [K, Na][AlSi3O8]–Ca[Al2Si2O8] 
(End-members: sanidine, C1" anorthite and high-albite) 

Ilmenite: [Fe, Mg, Mn]TiO3
(End-members: ilmenite, geikielite and pyrophanite) 

Dale et al. (2000) except for 
spessartine: Wpy–gr = 33 kJ, 
Wpy–alm = 2.5 kJ 
The spessartine end-member is 
considered as ideal one. 

Holland and Powell (1996) 
except that aegrine is ignored. 

Ideal 

Holland et al. (1998) 

Keller et al. (2005) 

Holland and Powell (2003) 

Modified after White et al. 
(2003) and Wei et al. (2003): 
Wgl–tr = 77 kJ, Wgl–fact = 83 kJ, 
Wts–tr = 20 kJ, Wts–fact = –38 kJ, 
Wtr–fact = 10 kJ, Wfgl–fact = 77 kJ, 
Wfgl–tr = 83 kJ, Wfts–fact = 20 kJ, 
Wfts–tr = –38 kJ 

Holland and Powell (2003) 

Ideal 

Single end-member minerals: quartz, lawsonite, and titanite 
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Table S3. Whole rock chemical compositions of the eclogite used for the pseudosection modeling 
(normalized wt%). For growth of the rim of the garnet, we used a garnet-fractionated bulk-rock 
composition. 

FeOT= total Fe as FeO 
The whole rock composition for the eclogite from Syros is the average of whole rock compositions of SY1401, SY1460 and 
SY1418 in Laurent et al. (2018). 

Figure S2. Results of estimation of the amount of pyroxene: a during the growth of the garnet core (500–530℃, without 
fill); b during the growth of the garnet rim. 
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Figure S3. Results of estimation of the amount of pyroxene end-members: a, b diopside; c, d hedenbergite; e, f jadeite. The 
left-side figures show the results during the growth of the garnet core (500–530℃, without fill), while the right-side figures 
show that during the growth of the garnet rim. 
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