Hydrothermal upgrading as an important tool for the REE mineralization in the Miaoya carbonatite-syenite complex, Central China

RONG-LIN MA1,2, WEI TERRY CHEN1,2,* , WEI ZHANG1, and YOU-WEI CHEN1

1State Key Laboratory of Ore Deposit Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
2University of Chinese Academy of Sciences, Beijing 100049, China

ABSTRACT

Secondary hydrothermal reworking of REEs has been widely documented in carbonatites/alkaline rocks, but its potential role in the REE mineralization associated with these rocks is currently poorly understood. This study conducted a combined textural and in situ chemical investigation on the REE mineralization in the ~430 Ma Miaoya carbonatite-syenite complex, central China. Our study shows that the REE mineralization, dated at ~220 Ma, is characterized by a close association of REE minerals (monazite and/or bastnäsite) with pervasive carbonatization overprinting the carbonatites and syenites. In these carbonatites and syenites, both the apatite and calcite, which are the dominant magmatic REE-bearing minerals, exhibit complicated internal textures that are generally composed of BSE-bright and BSE-dark domains. Under BSE imaging, the former domains are homogeneous and free of pores or mineral inclusions, whereas the latter have a high porosity and inclusions of monazite and/or bastnäsite. In situ chemical analyses show that the BSE-dark domains of the apatite and calcite have light REE concentrations and (La/Yb), values much lower than the BSE-bright areas. These features are similar to those observed in metasomatized apatite from mineral-fluid reaction experiments, thus indicating that the BSE-dark domains formed from primary precursors (i.e., represented by the BSE-bright domains) through a fluid-aided, dissolution-reprecipitation process during which the primary light REEs are hydrothermally remobilized. New, in situ Sr-Nd isotopic results of apatite and various REE minerals, in combination with mass balance calculations, strongly suggest that the remobilized REEs are responsible for the subsequent hydrothermal REE mineralization in the Miaoya complex. Investigations of fluid inclusions show that the fluids responsible for the REE mobilization and mineralization are CO2-rich, with medium temperatures (227–340 °C) and low salinities (1.42–8.82 wt‰). Such a feature, in combination with C-O isotopic data, indicates that the causative fluids are likely co-genetic with fluids from coeval orogenic Au-Ag deposits (220–200 Ma) in the same tectonic unit. Our new findings provide strong evidence that the late hydrothermal upgrading of early cumulated REEs under certain conditions could also be an important tool for REE mineralization in carbonatites, particularly for those present in convergent belts where faults (facilitating fluid migration) and hydrothermal fluids are extensively developed.

Keywords: Apatite, calcite, REE mobilization and mineralization, hydrothermal upgrading, Miaoya carbonatite-syenite complex

INTRODUCTION

Carbonatites and/or associated alkaline rocks have been important providers of REEs, particularly the light REEs (Mariano 1989; Sheard et al. 2012), and thus are important exploration targets. Although there are more than 500 occurrences of carbonatites in the world and most of them contain elevated concentrations of REEs, only a few display economic potential to warrant exploitation (Woolley and Kjarsgaard 2008; Verplanck et al. 2016). Hence, unveiling key factors or processes leading to economic concentrations of REEs in these rocks has long been an attractive topic for ore genesis studies over the past decades (Xie et al. 2009; Pandur et al. 2014; Hou et al. 2015; Smith et al. 2016; Song et al. 2018). It was commonly accepted that processes responsible for REE enrichment in these rocks include primary magmatic concentration (e.g., the Mountain Pass deposit, California, U.S.A.) (Castor 2008), enrichment in late exsolved fluids through extreme fractionation of the carbonatitic or alkaline magmas, e.g., the Maoniuping deposit, southwest (SW) China (Xie et al. 2009; Hou et al. 2015; Liu and Hou 2017), or a combination of the processes mentioned above (Pandur et al. 2014; Broom-Fendley et al. 2016). There is also increasing evidence showing that hydrothermal redistribution of REEs cumulated in early carbonatites or alkaline rocks, triggered by late autogenic or external fluids, is also responsible for local REE enrichments, e.g., the Thor Lake and Strange Lake deposits, Canada (Salvi and Wiliams-Jones 1996; Sheard et al. 2012; Gysi and Williams-Jones 2013; Cheng et al. 2018; Cangelosi et al. 2020). However, the potential contributions of the hydrothermal reworking to REE mineralization in such kinds of deposits are still far from being clearly understood. Particularly, this unresolved issue likely gives rise to the controversies regarding ore genesis of some carbonatite-related REE deposits that show clear evidence of late hydrothermal overprints. A notable example could be the world’s largest Bayan Obo REE-Nb-Fe deposit, where primary mineralogy and textures were overprinted by multiple hydrothermal events (Smith et al. 2015; and reference therein). In this deposit, late hydrothermal fluids (millions of years younger than