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Abstract
Redox control in hydrothermal experiments is routinely achieved through double-capsule and 

Shaw membrane techniques. These techniques control oxygen fugacity (fO2) by imposing a defined 
hydrogen fugacity (fH2) on a studied sample enclosed, together with H2O, in a hydrogen membrane 
capsule made of Pt or Ag-Pd alloys. However, due to the low permeability of these membranes to H2 
at low temperatures (T), these techniques do not work efficiently below 450 °C. Here, we tested fused 
silica as a new hydrogen membrane and successfully applied it to monitor and control the redox states 
of studied samples at T down to 200 °C in hydrothermal experiments. Our results showed that 3, 8, 16, 
36, 96, and 216 h are sufficient for a fused silica capillary capsule (FSCC) to reach osmotic equilibrium 
with the externally imposed 1 bar of H2 at 350, 300, 250, 200, 150, and 100 °C, respectively, and H2 
pressures inside a FSCC was very close to the externally imposed values after osmotic equilibrium. By 
using FSCC as a hydrogen fugacity sensor, equilibrium H2 pressures for Ni-NiO-H2O and Co-CoO-H2O 
redox buffer assemblages at 250–400 °C and 1000 bar total pressure were measured. The equilibrated 
fO2 calculated are consistent with those derived from previous literature. Besides, FSCC can be used 
as a sample container, where fH2 and fO2 of enclosed samples can be continuously controlled. Further-
more, FSCC is an ideal container for sulfur-bearing samples, and its transparency allows spectroscopic 
analyses of the sample. Our work extended the low-T limit of previously well-developed redox control 
techniques and may open up a new research avenue in low-T hydrothermal experiments.
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Introduction
Double-capsule (or oxygen buffer; Eugster 1957) and Shaw 

membrane (Shaw 1963) techniques are commonly applied to 
control fO2 in hydrothermal experiments at elevated pressure-
temperature (P-T) conditions (normally >50 MPa and 600 °C). 
The success of these two techniques relies on the effective diffu-
sion of hydrogen across hydrogen membranes (e.g., Pt or Ag-Pd 
alloys), which are commonly used as the sample container. The 
oxygen buffer technique defines fO2 by the equilibrium reaction 
between solid buffer assemblages (e.g., Ni-NiO) and H2O, while 
the Shaw membrane technique defines fO2 by a hydrogen reservoir 
with known H2 partial pressure. Over approximately the last 
60 years, these two techniques have been greatly refined and 
widely used in hydrothermal experiments (Chou 1987; Scaillet 
et al. 1992; Taylor et al. 1992; Schmidt et al. 1995; Berndt et al. 
2002; Matthews et al. 2003; Alex and Zajacz 2020).

However, double-capsule and Shaw membrane techniques 
do not work efficiently at T below 450 °C, as the permeability 
of commonly used precious metal hydrogen membranes to H2 
may become too low to achieve osmotic equilibrium between the 
sample system and the buffer/reservoir system in a reasonable 
duration (Chou 1986). Pd-rich Ag-Pd and Au-Pd alloys were 
tested to have high permeability to H2 at low-T (e.g., Gunter et 
al. 1987; Sonwane et al. 2006). Nevertheless, a relatively long 

experimental duration is still needed for Pd-rich alloys to achieve 
H2 osmotic equilibrium at low-T (e.g., five days at 300 °C; Chou 
1989), and they cannot be employed in sulfur-bearing studies. 
As a consequence, fO2 conditions in hydrothermal experiments 
performed at T below 450 °C has normally been defined through: 
(1) mixing a solid oxygen buffer together with studied samples 
without a hydrogen membrane separating them (e.g., Gibert et 
al. 1998; Seewald 2001; Tagirov et al. 2005; Kokh et al. 2017); 
(2) loading a solid oxygen buffer into a quartz tube holder that 
is immersed in the sample solution in an autoclave with the open 
end exposed to the vapor phase of the sample (e.g., Archibald 
et al. 2001; Timofeev et al. 2018); and (3) redox equilibrium of 
aqueous multivalent-element species (e.g., sulfur; Pokrovski et 
al. 2015; Kokh et al. 2020). However, above-mentioned methods 
may suffer from leakage of H2 from the autoclave and possibly 
slow reaction kinetics of the redox buffer at low T. Therefore, it 
is necessary to develop a hydrogen fugacity sensor for directly 
monitoring the actual sample fH2 (or fO2) in low-T (<450 °C) 
hydrothermal experiments.

Diffusion coefficient measurements (Shang et al. 2009) 
demonstrated that fused silica is highly permeable to H2 even at 
T below 400 °C. For example, the diffusion coefficient of H2 in 
fused silica at 200 °C (10–12.9 m2/s) is two orders of magnitude 
higher than that in Pt at 600 °C (10–14.9 m2/s; Chou 1986). In 
addition, the transparency of fused silica enables phase obser-
vations and spectroscopic analyses for samples in a fused silica 
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