American Mineralogist, Volume 105, pages 1752–1755, 2020

Letter New pressure-induced phase transition to Co₂Si-type Fe₂P

Yoichi Nakajima^{1,*}, Shunya Araki^{1,2}, Daisuke Kinoshita¹, Kei Hirose^{3,4}, Shigehiko Tateno³, Saori I. Kawaguchi⁵, and Naohisa Hirao⁵

¹Department of Physics, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto-shi, Kumamoto 860-8555, Japan
²Department of Physics, Faculty of Science, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka-shi, Fukuoka 819-0395, Japan
³Earth-Life Science Institute, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan
⁴Department of Earth and Planetary Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
⁵Japan Synchrotron Radiation Research Institute, SPring-8, 1-1-1 Kouto, Sayo, Hyogo 679-5198, Japan

ABSTRACT

We found a new phase transition in Fe₂P from Co₂P-type (C23) to Co₂Si-type (C37) structure above 42 ± 2 GPa based on in situ X-ray diffraction experiments. While these two structures have identical crystallographic symmetry, the orthorhombic unit cell is shortened in *a*-axis but elongated in *c*-axis, the coordination number of phosphorous increases from nine to 10, and the volume reduces by 2% across the phase transition. The new C37-type Fe₂P phase has been found to be stable, at least to 83 GPa at high temperature. The Birch-Murnaghan equation of state for C37 Fe₂P was also obtained from pressure-volume data, suggesting that phosphorous contributes to 17% of the observed density deficit of the Earth's outer core when it includes the maximum 1.8 wt% P as observed in iron meteorites. In addition, since both Fe₂S and Ni₂Si are also known to have the C37 structure under high pressure, (Fe,Ni)₂(S,Si,P) could have wide solid solution and constitute planetary iron cores, although it is not dense enough to be a main constituent of the Earth's inner core.

Keywords: Iron phosphides, Fe₂P, high pressure, core, light element