Raman spectroscopic studies of O–H stretching vibration in Mn-rich apatites: A structural approach

ADAM PIECZKA1,*, BOŻENA GOŁĘBIOWSKA1, PIOTR JELEŃ2, MACIEJ SITARZ2, and ADAM SZUSZKIEWICZ2

1Department of Mineralogy, Petrography and Geochemistry, AGH University of Science and Technology, Mickiewicza 30, 30-059 Kraków, Poland
2Faculty of Materials Science and Ceramics, AGH University of Science and Technology, Mickiewicza 30, 30-059 Kraków, Poland

Abstract

The O–H stretching vibration mode in crystals of (Mn,Cl)-rich and F-poor minerals of the apatite-supergroup has been studied by micro-Raman spectroscopy. The main purpose was to check if such an analysis can provide a quick and simple method to assess the distribution of Ca and Mn together with traces of Fe + Mg (= Mn*) on nonequivalent cationic sites in the apatite structure, especially in small and strongly heterogeneous crystals directly in thin sections. The O–H stretching vibration mode can then be treated as a useful structural probe providing information on the O2H- occupants bonded to MnCl. Pieczkaite, with the empirical formula (Mn3.4F0.5Ca0.23Mg0.04(PO4)0.33(OH)2)2+4+[Fe9.2O32Cl3(OH)4.17], displays the O–H stretching mode centered at ~3380 cm⁻¹, which shows that the complete replacement of Ca by Mn* at the M2 site is connected with a shift of the O–H stretching band ~192 cm⁻¹ toward lower wavenumbers in relation to the O–H Raman band position reported for hydroxylapatite. The value is high enough to be an indicator of the Mn*···OH content in any sample of Mn-enriched apatite. Studies of the fine structure of the band disclosed its dependence on (1) the local combinations of Ca and Mn* forming triplets of M2 cations bonded to the X anion, (2) the presence of OH+Cl at the two half-occupied X sites that form chemical bonds with the M2 cations varying in strength and length, and (3) the spatial geometry of the X–M2 bonds and polarizability of the monovalent X anion by varying cations in the M2M2M2 triplets. The deconvolution of the band into maximum eight component bands with constant Raman shifts opens the possibility of evaluating the averaged M2M2M2 triplet bonded to oxygen of the OH group. If the OH/(OH+Cl) fraction is known, the amounts of Ca and Mn* bonded to OH can also be estimated. Application of the method to the holotype parafiniukite showed a slightly different distribution of Ca in M2M2M2 triplets than had been assumed from single-crystal X-ray diffraction. However, it corroborates suggestions that in the apatite structure there may be a preference for ⁵⁷Mn to be bonded to ³⁷OH and ⁵¹Mn* to ³⁷Cl. Our results show that the proposed method can be used as an independent tool in structural studies of Mn-rich minerals of the apatite-supergroup, providing results complementary to single-crystal X-ray diffraction. This method can easily be adjusted to modern apatite-type nanomaterials synthesized for biomedical and various industrial applications.

Keywords: Mn-bearing minerals of the apatite supergroup, Raman spectroscopy, O–H stretching vibration, pieczkaite, parafiniukite

Introduction

Pieczkaite, ideally Mn₃Mn₃(PO₄)₂Cl, and parafiniukite, ideally Ca₄Mn₁(PO₄)₃Cl, are two (Mn,Cl)-dominant apatite-supergroup minerals described recently from two highly Mn-Fe fractionated granitic pegmatites of the Li–Ca–Ta (LCT) petrogenetic family at Cross Lake, Manitoba, Canada, and at Szklary, Lower Śląskie, Poland (Tait et al. 2015; Pieczka et al. 2018). Both minerals were also recognized in phosphate nodules of an LCT-type pod within the hybrid NYF (Nb–Y–F) + LCT Julianna pegmatitic system at Piława Górna, Lower Śląskie, Poland (Twardak and Pieczka 2018). In pieczkaite and parafiniukite, F is commonly absent or occurs only in traces, and the dominant monovalent anion is Cl. On the other hand, the OH group is usually an important minor constituent substituting for Cl. The structures of both minerals have been determined and spectroscopic measurements in the range of the O–H stretching vibration mode have confirmed the existence of Cl–OH solid solutions (Tait et al. 2015; Pieczka et al. 2018).

In studying phosphates of the apatite supergroup with compositions determined by the Mn→Ca substitution, the Mn-Ca ordering between the two nonequivalent cation sites is of primary importance (e.g., Tait et al. 2015; Pieczka et al. 2018; Szuszkiewicz et al. 2018). Therefore, a quick and simple method providing such information even from small crystals directly in petrographic thin sections would be a very useful research tool. In this study, we demonstrate that Raman micro-spectroscopy can be successfully employed for that purpose.

Background information on Mn-bearing apatites

Pieczkaite and parafiniukite crystallize in hexagonal space-group symmetry P6₃/m with unit-cell parameters a = 9.504(4) and 9.4900(6) Å, and c = 6.347(3) and 6.4777(5) Å, respectively (Tait et al. 2015; Pieczka et al. 2018). Accepting the generic formula of the apatite supergroup IXM₃,Y(II)M₂(XO₆),X³⁺(Z = 2), the M sites can incorporate a wide range of cations such as Ca²⁺, Pb²⁺,