Interlayer energy of pyrophyllite: Implications for macroscopic friction

HIROSHI SAKUMA1,*, KENJI KAWAI2, and TOSHIHIRO KOGURE2

1Functional Clay Materials Group, National Institute for Materials Science, Tsukuba, Ibaraki, 305-0044, Japan
2Department of Earth and Planetary Science, School of Science, University of Tokyo, Tokyo 113-0033, Japan

ABSTRACT

Deformation of phyllosilicate can control the dynamics of the Earth’s crust. The phenomenological relationship between stress and deformation is known for some typical phyllosilicates; however, the underlying physics originating from the crystal structures is poorly understood. In this study, the deformation mechanism of pyrophyllite along basal planes was revealed through density functional theory calculations and atomic-scale theory of friction. The stable and metastable interlayer structures formed by interlayer slide were consistent with the experimental results reported previously by high-resolution transmission electron microscopy. The difference in potential energies between stable and metastable interlayer structures can be interpreted as the difference in the stacking of dioctahedral sheets between the adjacent layers. The estimated friction coefficient of the pyrophyllite between adjacent layers was consistent with the results of atomic force microscopy, suggesting that atomic-scale friction can be adequately estimated by this method. The calculated shear stress in our simulations has a linear relationship with the normal stress and has no significant crystallographic dependence on sliding direction along the basal planes. The crystallographic isotropy of interlayer friction is explained by the absence of interlayer cations in pyrophyllite, while muscovite showed crystallographic anisotropy as observed in previous studies. The macroscopic friction of a single crystal of pyrophyllite was estimated from atomic-scale friction by using the area of contact. The macroscopic friction coefficient of ideal interlayer sliding was estimated to be 0.134, which was smaller than a reported value (0.276) in shear experiments conducted for wet polycrystalline gouge layers. This difference can be primarily explained by the degree of orientation of pyrophyllite particles in the gouge layers. The friction coefficient estimated by a simple model of randomly oriented pyrophyllite gouge layer was 0.203 ± 0.001, which was similar to the reported value of 0.276 ± 0.01, which was similar to the reported value of 0.276 and clearly smaller than the values (0.6–0.85) of common minerals estimated by the empirical Byerlee’s law. These results indicate that weak interlayer friction of phyllosilicates has a large effect on the low frictional strength of gouge layers in natural faults. Our methodology and results are useful for understanding the physics behind the phenomenological friction laws of phyllosilicate gouge.

Keywords: Pyrophyllite, friction coefficient, interlayer friction, gouge layers, density functional theory

INTRODUCTION

Deformation of rocks and minerals controls crustal dynamics. The shear strength of rocks can be reduced by the presence of phyllosilicates (Byerlee 1978; Shea and Kronenberg 1993; Wintsch et al. 1995; Jefferies et al. 2006; Mariani et al. 2006; Amiguet et al. 2012). Phyllosilicates have been found in many natural faults and on sliding planes of landslides; therefore, the frictional properties of phyllosilicates are critical for understanding the dynamics of the Earth’s crust.

The stability of gouge-bearing faults have been evaluated in laboratory using shear tests and through analyses based on a phenomenological rate- and state-dependent friction (RSF) law (Dieterich 1979; Ruina 1983); however, the physics behind the law depends on the materials, is complicated, and it is difficult to extrapolate the results to natural faults. Grain boundary friction, grain-size reduction, grain rolling, and pressure solution are critical factors affecting granular fault gouges (Bos and Spiers 2001). The recent development of a microphysical model partly reveals the physics behind the macroscopic frictional strength of granular fault gouges (Chen and Spiers 2016; Chen et al. 2017). In their model, the shear strength of the gouge is mainly controlled by porosity and grain boundary friction. However, the model was limited to spherical particles, and grain boundary friction was still expressed by an empirical parameter.

Grain boundary friction of phyllosilicates may be weaker than for other minerals because of two reasons. First, friction can be lubricated by adsorbed and interlayer water in hydrophilic phyllosilicates (Horn and Deere 1962; Morrow et al. 2000; Sakuma et al. 2006; Ikari et al. 2007; Moore and Lockner 2007; Sakuma et al. 2011; Behnsen and Faulkner 2012; Sakuma 2013; Katayama et al. 2015; Kawai et al. 2015; Morrow et al. 2017; Tetsuka et al. 2018). Second, the presence of weak bonding planes in phyllosilicate crystal structures can reduce the frictional force (Moore and Lockner 2004; Kawai et al. 2015; Sakuma et al. 2018; Okuda et al. 2019).