Changes in the cell parameters of antigorite close to its dehydration reaction at subduction zone conditions

TINGTING SHEN1, CONG ZHANG1,5,*, JING CHEN2, JÖRG HERMANN3,6, LIFEI ZHANG4, JOSÉ ALBERTO PADRÓN-NAVARTA1,†, LI CHEN2, JUN XU2, and JINGSUI YANG1

1Key Laboratory of Deep-Earth Dynamics of Ministry of Natural Resources, Institute of Geology, Chinese Academy of Geological Sciences, Beijing 100037, China
2Electron Microscopy Laboratory, Peking University, Beijing 100871, China
3Research School of Earth Sciences, the Australian National University, Canberra ACT 0200, Australia
4Department of Geology, School of Earth and Space Sciences, Peking University, Beijing 100871, China
5College of Earth Science and Engineering, Shandong University of Science and Technology, Qingdao 266510, China
6Institute of Geological Sciences, University of Bern 3012, Switzerland
7Géosciences Montpellier, Université de Montpellier & CNRS, F-34095 Montpellier Cedex 5, France

ABSTRACT

The unit-cell parameter a of antigorite (usually expressed as the polysome m value) has been determined as a function of temperature (T) and pressure (P) in the range of 600–650 °C, 25–45 kbar in weeklong piston-cylinder experiments. A well-characterized natural antigorite (with $m = 16$ and less abundant $m = 15$) was used as a starting material that coexisted with olivine, chlorite, Ti-humite, and aqueous fluid at run conditions. Transmission electron microscope (TEM) measurements on selected focused ion beam (FIB) wafers showed that antigorite m values after the experiments varied between 14 and 22. More than 40 punctual analyses for each run condition were acquired to determine the range and the primary m value. The most frequent antigorite m-value decreased systematically from 17–19 at 600 °C to 15–16 at 650 °C. The spacing of the m-isolines is getting narrower as the antigorite breakdown reaction is approached. The topology of the m-isolines is similar to that previously characterized for the simple MgO-SiO$_2$-H$_2$O (MSH) system. However, the isolines are shifted to about 50–100 °C higher temperatures due to the incorporation of Al into antigorite. Powder samples and FIB wafers of natural antigorite from the Tianshan UHP belt (China) with peak metamorphic conditions of ~35 kbar, ~520 °C were also investigated with TEM. Low Al-antigorite formed at peak metamorphic conditions displays a peak m value of 20–21, whereas high-Al antigorite formed during isothermal decompression displays a lower m value of 19. Combination of our results with the published data of m values from metamorphic antigorite that experienced various conditions allowed construction of a P-T-m diagram that can be used in future studies to better constrain formation conditions of serpentinites. The decrease of m values and the increase of Al in antigorite with increasing temperature result in small, continuous dehydration whereby the H$_2$O content of antigorite changes from 12.4 to 12.1 wt%. Therefore, it is expected that a pore fluid is present during the prograde deformation of serpentinites. TEM observations showed that antigorite adjusted its Al content by segregation of chlorite at the nanoscale. Together with the observation that multiple m values are always present in a single sample, this result indicates that full equilibration of antigorite at the micrometer-scale is rare, with important implications for the interpretation of geochemical signatures obtained by in situ techniques.

Keywords: Antigorite, polysomatism, TEM, high-pressure experiments, serpentinite

INTRODUCTION

Antigorite is a high-temperature and high-pressure serpentine variety (Evans et al. 1976) and the most abundant hydrous phase in subducted ultramafic rocks down to approximately 100 km depth (e.g., Ulmer and Trommsdorff 1995, 1999; Wunder and Schreyer 1997; Schmidt and Poli 1998; Wunder et al. 2001; Scambelluri et al. 2001, 2004a, 2004b; Bromiley and Pawley 2003; Hattori and Guillot 2003, 2007; Shen et al. 2015; Maurice et al. 2018). Serpentinites usually form by reaction of mantle rocks with seawater-derived fluids during ocean floor alteration (e.g., Bonatti and Crane 1984). Additionally, parts of the mantle wedge might also become serpentinized above the subduction channel when fluids are released during prograde metamorphism of sediments and mafic crust (e.g., Iwamori and Zhao 2000; Kawakatsu and Watada 2007). Lizardite- and chrysotile-rich serpentinites are characteristic of low-temperature and low-pressure metamorphic conditions (e.g., Janecky and Seyfried 1986; Evans 2004; Evans et al. 2013; Schwartz et al. 2013; Ghaderi et al. 2015). Antigorite then...