A low-aluminum clinopyroxene-liquid geothermometer for high-silica magmatic systems KARALEE K. BRUGMAN^{1,*} AND CHRISTY B. TILL¹

¹School of Earth and Space Exploration, Arizona State University, Tempe, Arizona 85287, U.S.A.

ABSTRACT

Several geothermobarometric tools have focused on clinopyroxene due to its prevalence in igneous rocks, however clinopyroxene produced in high-silica igneous systems is high in iron and low in aluminum, causing existing geothermometers that depend on aluminum exchange to fail or yield overestimated temperatures. Here we present a new clinopyroxene-liquid geothermometer recommended for use in natural igneous systems with bulk $SiO_2 \ge 70$ wt%, which contain clinopyroxene with Mg# ≤ 65 and $Al_2O_3 \le 7$ wt%.

$$T(^{\circ}C) = 300 \begin{bmatrix} -1.89 - 0.601(X_{Cars}^{Cpx}) - 0.186(X_{DiHd_{200}}^{Cpx}) + 4.71(X_{SiO_{2}}^{Sio_{2}}) + 77.6(X_{TiO_{2}}^{Sio_{2}}) \\ +10.9(X_{FeO}^{Sio_{2}}) + 33.6(X_{MgO}^{Sio_{2}}) + 15.5(X_{CaO}^{Sio_{2}}) + 15.6(X_{KO_{3}}^{Sio_{2}}) \end{bmatrix}$$
(1)

The new geothermometer lowers calculated temperatures by ~85 °C on average relative to Putirka (2008, Eq. 33) and reduces the uncertainty by a factor of two (standard error of estimate ± 20 °C). When applied to natural systems, we find this new clinopyroxene-liquid geothermometer reconciles many inconsistencies between experimental phase equilibria and preexisting geothermometry results for silicic volcanism, including those from the Bishop Tuff and Yellowstone caldera-forming and post-caldera rhyolites. We also demonstrate that clinopyroxene is not restricted to near-liquidus temperatures in rhyolitic systems; clinopyroxene can be stable over a broad temperature range, often down to the solidus. An Excel spread-sheet and Python notebook for calculating temperature with this new geothermometer may be downloaded from GitHub at http://bit.ly/cpxrhyotherm.

Keywords: Geothermometer, clinopyroxene, high-silica