Sodium amphibole in the post-glaucophane high-pressure domain: The role of eckermannite

HARRIET HOWE¹, ALISON R. PAWLEY^{1,*}, AND MARK D. WELCH²

¹School of Earth and Environmental Sciences, University of Manchester, Manchester M13 9PL, U.K. ²Department of Earth Sciences, Natural History Museum, London SW7 5BD, U.K.

ABSTRACT

An amphibole close to eckermannite in composition, ideally Na₃Mg₄AlSi₈O₂₂(OH)₂, was encountered in experiments on a bulk composition close to that of glaucophane at 6.2 GPa, ~550–650 °C. The synthetic amphibole has an average composition corresponding to ^ANa_{0.96}^B(Na_{1.80}Mg_{0.20})^C(Mg₄Al)^T(Si_{7.85}Al_{0.15}) O₂₂(OH)₂. This composition is displaced from that of end-member eckermannite by exchange vectors +0.15 ^BMg^TAl^BNa₋₁^TSi₋₁ and +0.05 ^A \square ^BMg^ANa₋₁^BNa₋₁ (\square = vacant site). In terms of end-members, it corresponds to 80% eckermannite + 15% Mg-katophorite, Na(NaMg)(Mg₄Al)(Si₇Al)O₂₂(OH)₂, +5% Mg-winchite, (NaMg)(Mg₄Al)Si₈O₂₂(OH)₂, and as such is essentially binary. The absence of a glaucophane component implies that the stability of sodium amphibole at very high pressures (>4 GPa) involves eckermannitic rather than glaucophanic compositions. The stabilization of the eckermannite-pyrope tie line allows this highly Na-rich amphibole to occur even in bulk compositions that are not particularly Na-rich. In blueschist facies metabasites, it is possible that eckermannite forms by the reaction 9 jadeite + 7 talc \rightarrow 3 eckermannite + 3 pyrope + 13 coesite + 4 H₂O, above the stability limit of glaucophane that is defined by the reaction glaucophane \rightarrow 2 jadeite + talc.

Keywords: Glaucophane, eckermannite, high pressure, blueschist, subduction