Wilhelmgümbelite is weakly pleochroic Z (orange brown) >> Y (yellow brown). It is optically biaxial (+), α = 1.560(2), β = 1.669(2), γ = 1.718(2) (white light), 2V\(_\text{calc}\) = 63(1)°, 2V\(_{\text{meas}}\) = 65°, X = b, Y = c, Z = a, dispersion of an optical axes is weak ν > r. Attenuated total reflection infrared spectroscopy on crushed crystals shows a peak at 970 cm\(^{-1}\) (P–O stretching vibrations of the PO\(_4\) groups), another peak at 1635 cm\(^{-1}\) (H–O–H bending vibration) and a broad featureless peak centered at 3200 cm\(^{-1}\) (O–H stretching of H-bonded water molecules). The average of the electron probe WDS analysis of 7 separate crystals [wt% (range)] is: ZnO 16.4 (15.4–17.2), MnO 2.6 (2.4–2.8), Fe\(_2\)O\(_3\) 5.8, FeO 5.8, Fe\(_3\)O\(_4\) 25.0 (from structure)], P\(_2\)O\(_5\) 28.7 (27.6–29.3), H\(_2\)O (from structure) 23.4, total 101.9. The empirical formula based on 3 P pfu, with Fe\(^{2+}\) and Fe\(^{3+}\) consistent with bond lengths and bond valence sums, is Zn\(_{0.50}\)Mn\(_{0.27}\)Fe\(_{1.23}\)O\(_{2.73}\)Fe\(_{1.50}\)(PO\(_4\))\(_{2}\)(OH)\(_{2}\)(H\(_2\)O)\(_{2.23}\). The strongest lines in the X-ray powder diffraction pattern are \(d\ \text{Å}\ (hkl)\): 12.65 (100; 020), 8.339 (5; 120), 6.421 (14; 001), 6.228 (8; 011), 4.223 (30; 120), 2.111 (7; 0.12.0). The unit-cell parameters refined from the powder data are: \(a = 11.099(5), b = 25.338(4)\ \text{Å}, c = 6.425(2)\ \text{Å}, V = 1806.9\ \text{Å}^3\). X-ray diffraction intensity data was collected in the macromolecular beam line MX2 of the Australian Synchrotron using one single crystal of 0.18 × 0.05 × 0.03 mm. The single crystal unit-cell parameters are: \(a = 10.987(7), b = 25.378(13), c = 6.387(6)\ \text{Å}, V = 25.0\ \text{Å}^3\). The crystal structure of wilhelmgümbelite was refined to \(R_I = 0.072\) for 869 observed \(I > 2\sigma(I)\) reflections. Wilhelmgümbelite is isostructural with schoonerite, with Mn\(^{2+}\) replaced principally by Fe\(^{3+}\) and has the Zn partitioned between two different sites 1 Å apart: one fivefold-coordinated as in schoonerite and another tetrahedrally coordinated. Wilhelmgümbelite also differs structurally from schoonerite in having partial occupation of one of the Fe sites, which appears to be correlated with the Zn partitioning. The name is for Carl Wilhelm von Gümbel (1823–1898), who was appointed by King Maximilian II to lead the geological studies of the kingdom of Bavaria and provided essential contributions to the mineralogical and geological investigation of pegmatites and their minerals in the northeastern parts of Bavaria. The name wilhelmgümbelite was chosen to avoid confusion with the obsolete name gümbelite that still appears in the literature as a synonym for illite-2M\(_f\). The holotype specimen of wilhelmgümbelite is housed in the Museum Victoria, Melbourne, Victoria, Australia. F.C.

Erratum

We apologize for an error in the list of authors for the mineral Ilyukhinite (August 2017, vol. 102, issue 8, New Mineral Names). It was published as:

It should be:

Erratum

In Table 1 of this paper (p. 2087), in the Traverse column, the \(C_p\) should be CP for Caplin-Patsy.